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1 Appendix B. Additional Figures

2 Appendix C. Additional Proofs

C1. Proof of Lemma 5.
o—1 —1+/14+2wED2

Proof. Combining the minimum firm size n = = £5? (Equation 13 in the main

text) and the wage function w = "T_ltw_% (Equation 17 in the main text) yields the following

free-entry condition
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Rewrite the market-clear condition (12) as
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These two equations implicitly define two unknown variables (a, w) in terms of the parameters
including ¢. Totally differentiate (C1) and (C2) with respect to ¢:
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Figure B1. WageAncome by@Manager@ypend Industries

All Salaried Managers/Workers

Mid-level and Low-level Managers/Workers
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Figure B2. Employment by@Manager Type and Industries

share of employment

share of employment

Managers among All Industry Workers

o
o~
o R
a a a a a A - a
o4
T T T T T T
2002 2004 2006 2008 2010 2012
Year (2003-2011)
= Transportation and Utilities 4 Manufacturing
< Wholesale and Retail Trade = Services
Top Managers among All Managers
™
° °
°
- 2 2 2 £ N : “
o~
- T
o4
T T T T T T
2002 2004 2010 2012

2006 2008
Year (2003-2011)

* Transportation and Utilities
< Wholesale and Retail Trade

4 Manufacturing
= Services

share of employment

share of employment

Self-employed among All Industry Workers

(|
~
—
. ’ " - . . . . -
¢ ° ¢ < ° ° ° ° o
'y a A - A - 4 - 'y
ol
2002 2004 2006 2008 2010 2012
Year (2003-2011)
* Transportation and Utilities 4 Manufacturing
< Wholesale and Retail Trade = Services
Top Managers among Salaried Managers
@
~
—
O R I D R
o
2002 2004 2010 2012

2006 2008
Year (2003-2011)

= Transportation and Utilities 4 Manufacturing
< Wholesale and Retail Trade = Services

Notes: Selffemployed@vorkersEare@ndividuals@vholareltlassifiedas “Selffemployed” inthelU.S.BLabor
Statistics.Balaried@nanagers@redndividuals@vhoselccupationdslassifiedzs “Managerial@®ccupation”

inBthelU.S.BNationalBiOccupationalBiCompensationiStatistics. TopEmanagersRarelindividualsBwhose

occupationstare@lescribedfas@'generalBmanagers”BrA'chief@xecutives.” AllBnanagersA@ncludetboth@he
selffemployed@EndBalaried@nanagers.@ataBource: U.S.BureaulfillaborBtatistics.



Then,
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Using the proof of Lemma 4, we can show that 89 < 0 and thus 2 —a —g(a) < 0. We now

consider the sign of % and that of [% —g(a)] %2 + it%.
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Since the terms involving the derivatives of the threshold values of talent cancel out,
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In what follows, we show ©1 > 0,05 > 0, and O3 > 0.
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Since
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©1 > 0 and ©3 > 0.

Consider
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Given that h(0) =0, h(xz) > 0 for x > 0. Then

> 0.
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Now, we are left with the task of determining the sign of [% — g(g)]% + %
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Obviously, the first two terms in the curly bracket are negative; if the third term is negative

i

as well, the whole expression will be negative. Following the proof of Lemma 4, we write
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Then,
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Given that
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we have
Q1 > 0,09 >0,and Q3 > 0.

As a result,
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Then, from (B3),
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C2. Proof of Proposition 5.
Proof. Proposition 5 relies on the existence of a unique equilibrium in the monopolistic

competition model, which we will prove now. The market clearing condition is

M-f—i—/aag(a)dazl—M, (C4)

e
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where M = / g(a)da is the number of managers and M - f is the aggregate demand for raw
a

labor to bear the fixed costs; @ = e(a)% + 1 - e(a)]%?) is the aggregate demand for

raw labor to bear the variable costs. Rewrite (C4) as
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Using the relationship between revenues across firms and the corresponding managerial ef-
forts, the left-hand side of (C5) becomes
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The first term of (C6) is decreasing in a since QT = —g(a)—t/(g)eg(a)da <
a
0.

Denote the terms in curly bracket ®(a). Then
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All the other terms in (C7) are negative. Hence, ®'(a) < 0: the demand curve is downward



sloping. Since M = / g(a)da decreases in a, the right-hand side of (C5) increases in a.

Moreover, the differencge between the left-hand side and the right-hand side is positive when
a — 0, and the difference is negative when ¢ — oo. By the intermediate value theorem,
there exists a single interior point a € (0,00) that equates the two sides of (C5). Therefore,
a unique cutoff talent a is well defined.

We now turn to the proof of Proposition 5.
Part 1). The first result holds for any continuous and differential probability distributions.
Thus, I prove a general case without specifying a Pareto distribution of talent. Rewrite (C4)

as an implicit function in (g, ¢):
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Add aterm £ 6 (g)eflg(a)da and subtract the same vadueSZ[/(Z)E Lg( )da—l—/(i) (a)da+
(%)6_1 g(a)da]. Rearranging terms and using the market entry condition: % + ﬁ =
1+ f, Q(a, &) can be written as:
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Holding a constant, differentiate (a, ) with respect to €. It is straightforward to show that

Q(a, €) increases in ¢ if a* and a** are held as constant. The key is to check the terms involving



the derivatives of the boundary values of the integral (a¢* and a**), which are collected as:
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The effects through the threshold values cancel out. Hence 2 > 0. From the proof of

existence of the equilibrium, we can easily obtain aﬂ(a 2 <. Therefore
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Part 2) With the Pareto distribution, the fractions of each type of manager among all

managers are
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Part 3) With the Pareto distribution, the expected wage of a manager receiving a rent-
sharing incentive contract consists of two components: 1) a constant w and 2) a variable
component drawn from a Pareto dlstrlbutlon with a shape parameter s ( TE=)) and with a
minimum value 2(1 — w). Since ﬁ decreases in ¢, the wage distribution of the managers
with high-powered pay features a larger variance, a higher skewness, and thus a greater wage

inequality. The average compensation to these managers is

Tyrent _ 2(1 —
w w + 2( w)/\_Q(g_l),

which increases in €.
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