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Abstract.
Organizations often rely on statistical algorithms to make socially and economically impactful deci-

sions. We must address the fairness issues in these important automated decisions. On the other

hand, economic efficiency remains instrumental in organizations’ survival and success. Therefore,

a proper dual focus on fairness and efficiency is essential in promoting fairness in real-world data

science solutions. Among the first efforts towards this dual focus, we incorporate the equal op-

portunity (EO) constraint into the Neyman-Pearson (NP) classification paradigm. Under this new

NP-EO framework, we derive the oracle classifier, propose finite-sample based classifiers that

satisfy population-level fairness and efficiency constraints with high probability, and demonstrate

statistical and social effectiveness of our algorithms on simulated and real datasets.
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1. Introduction

Recently, the U.S. Justice Department and the Equal Employment Opportunity Commission

warned employers that used artificial intelligence to hire workers for potential unlawful racial

discrimination.1 Earlier, Amazon was accused of gender bias against women in its deployment

of machine learning algorithms to search for top talents.2 Evidence that algorithmic decision-

making exhibits systematic bias against certain disadvantageous social groups has been accumu-

lating in labor markets (Chalfin et al., 2016; Lambrecht and Tucker, 2019) and also growing in
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1 “AI Hiring Tools Can Violate Disability Protections, Government Warns,” Wall Street Journal, May
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many other areas, including credit lending, policing, court decisions, and healthcare treatment

(Arnold et al., 2018; Kleinberg et al., 2018; Bartlett et al., 2022; Obermeyer et al., 2019; Fuster

et al., 2022). To address the public concern of algorithmic fairness, a number of studies pro-

pose to regulate algorithmic design such that disadvantageous groups must receive non-disparate

treatments (Barocas and Selbst, 2016; Kleinberg et al., 2017; Corbett-Davies et al., 2017; Baro-

cas et al., 2019). Statistically, this means that, in carrying out its predictive task, an algorithm

ought to prioritize the fairness-related construction, such as purposefully equalizing certain error

types of concern. However, efficiency loss could occur as these fairness-related designs may limit

the prediction accuracy (Kleinberg et al., 2017).

Consider that a bank uses an algorithmic classifier to decide whether to approve a loan

application based on default status prediction. Here, fairness is a primary concern of the society

and regulations; concretely, the disparity between denial rates of qualified applicants by sensitive

attributes, such as gender or race, is not tolerated. The banks, however, concern intrinsically

more about the efficiency, which can be decoupled into two parts, the false negative rate (i.e.,

the probability of misclassifying a default case as non-default) and the false positive rate (i.e.,

the probability of misclassifying a non-default case as default). The false negative rate, due to

its connection to financial security, has a higher priority for the banks than the false positive

rate. Here and in many other examples, social fairness and economic efficiency could be in

conflict. To address this conflict, we propose a novel framework that accommodates a dual focus

on efficiency and fairness, as well as the asymmetric importance within efficiency consideration.

The efficiency part of our framework is based on the Neyman-Pearson (NP) classification

paradigm (Cannon et al., 2002; Scott and Nowak, 2005). This paradigm controls the type I error

(i.e., the probability of misclassifying a 0 instance as 1) under some desired level α (referred to

as the NP constraint) while minimizing the type II error (i.e., the probability of misclassifying

a 1 instance as 0). In the loan application example, if we label the default status as 0 and non-

default status as 1, the type I error is the false negative rate and the type II error is the false

positive rate. The asymmetric treatment of the NP paradigm permits a flexible control over

the more-consequential error type. The fairness part of our framework borrows a relaxation of

the equality of opportunity (EO) concept (Hardt et al., 2016). Assuming class 1 is the favored

outcomes, the EO constraint requires achieving the same type II error in all sensitive groups

(e.g., race or gender); in the context of loan application, this means that denial rates of qualified

applicants should be equalized in different groups. The relaxation we adopt eases the exact

rate-equality requirement by allowing a pre-specified ε difference (Donini et al., 2018; Agarwal

et al., 2018). In verbal discussion, we will still refer to this relaxation as the EO constraint.

Fusing the above efficiency and fairness parts together, we have the new NP-EO paradigm.

A natural question is: for any given α, ε ∈ (0, 1), are the NP constraint for economic efficiency

and the EO constraint for social fairness feasible simultaneously? We provide a positive answer

to this question. Moreover, leveraging the generalized Neyman-Pearson Lemma, we derive an

NP-EO oracle classifier.

Guided by the NP-EO oracle, we construct finite-sample based classifiers that respect the
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population-level NP and EO constraints with high probability. The solution inspires us to take

an umbrella algorithm perspective; that is, we wish to adjust the commonly-used methods (e.g,

logistic regression, random forest, gradient boosting tree, neural nets) to the NP-EO paradigm

in a universal way and propose a provable algorithm for this overaching goal. Similar in spirit to

the original NP umbrella algorithm developed in Tong et al. (2018) and its variant for corrupted

labels in Yao et al. (2022), we employ an order statistics approach and do not have distributional

assumptions on data in the algorithmic development. But the technicalities here are much more

involved than in the NP umbrella algorithms, because we need to determine two thresholds

(instead of one) simultaneously. In simulation studies, we demonstrate that NP-EO classifiers

are the only classifiers that guarantee both NP and EO constraints with high probability. This

advantage of the NP-EO classifiers is further demonstrated on a credit card dataset.

This paper contributes to the emerging literature on algorithmic fairness. The overall goal of

this scholarly endeavor is to promote algorithmic decision making for the social good, especially

for the protection of socially disadvantageous groups. Existing studies have focused on algo-

rithmic bias due to data sampling and engineering (Rambachan and Roth, 2019; Cowgill and

Tucker, 2020), the construction of fairness conditions (Hardt et al., 2016; Kleinberg et al., 2017),

and the way of incorporating ethical concerns into algorithmic optimization (Corbett-Davies

et al., 2017), among others.

The fundamental social science problem, the tradeoff between economic efficiency and so-

cial equality, however, has not yet adequately addressed. Some researchers advocate a social-

planning approach, in which the algorithmic designer models a social welfare function that

captures an explicit preference for a certain socially desirable objective (Kleinberg et al., 2018;

Rambachan et al., 2020). While this approach provides a useful benchmark to evaluate social

welfare in the presence of ethical consideration, how to put it into practice is a great challenge.

Social preferences are often difficult to measure and have to be approximated by some measur-

able outcomes. These proxies can be mismeasured and lead the predictive outcomes astray, as

demonstrated in Mullainathan and Obermeyer (2017) and Obermeyer et al. (2019).

Alternative to the social-planning approach, our approach is from a regulatory perspective,

in which a decision maker can pursue their own objective after obeying a certain regulatory

constraint. Existing algorithmic designs under the regulatory framework (Corbett-Davies et al.,

2017) do not explicitly cope with the efficiency-equality tradeoff. Regulatory failure is likely to

occur when the efficiency loss caused by the fairness constraint is significant. Our proposed NP-

EO approach provides a framework to detect algorithmic bias, evaluate the social loss caused

by self-interested algorithms, and regulate algorithms to maintain the regulatory goal while

permitting users sufficient freedom to achieve efficiency.

In the algorithmic fairness literature, many criteria were proposed to define “fairness”; see

Barocas et al. (2019) and references within. Our work does not intend to introduce another

new fairness criterion. Rather, our framework is flexible enough that the EO constraint can

potentially be replaced by other well-defined fairness criteria, and the NP constraint can also be

replaced by other efficiency priority. Such efficiency-fairness dual constraints have the potential
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to be implemented as long as their population versions are simultaneously feasible.

The rest of the paper is organized as follows. Mathematical settings of the Neyman-Pearson

equal opportunity (NP-EO) paradigm is introduced in Section 2. Then, Section 3 presents the

NP-EO oracle classifier. We introduce two NP-EO umbrella algorithms and provide theoretical

justification in Section 4. Numerical studies are presented in Section 5. Finally, we conclude

with a discussion. Lemmas, proofs, and other technical materials are relegated to the Appendix.

2. Neyman-Pearson equal opportunity (NP-EO) paradigm

2.1. Mathematical setting and preliminaries

Let (X,S, Y ) be a random triplet where X ∈ X ⊂ IRd represents d features, S denotes a

sensitive attribute that takes values from {a, b}, and Y denotes the class label that takes values

from {0, 1}. It is not necessary that every feature in X is neutral ; we partition the features into

X and S to emphasize that we will specifically consider a classifier’s societal impacts related to

S. We denote by IP a generic probability measure whose meaning will be clear in context, and

denote respectively by IPZ and IPB the probabilities taken with respect to the randomness of Z

and B, for any random variable Z and random set B. Let ϕ : X ×{a, b} 7→ {0, 1} be a classifier.

The (population-level) type I error and type II error of ϕ are defined as

R0(ϕ) := IP (ϕ(X,S) ̸= Y | Y = 0) and R1(ϕ) := IP (ϕ(X,S) ̸= Y | Y = 1) ,

respectively. Next, we denote the type I/II error conditional on the sensitive attribute by

Rs
y(ϕ) := IP (ϕ(X,S) ̸= Y | Y = y, S = s) ,

for y ∈ {0, 1} and s ∈ {a, b}. Then it follows that,

Ry(ϕ) = IP(ϕ(X,S) ̸= Y |Y = y) = Ra
y(ϕ) · pa|y +Rb

y(ϕ) · pb|y , (1)

where ps|y = IP(S = s | Y = y) for s ∈ {a, b}. Each ps|y is assumed to be non-zero, and we use

Xy,s as a shorthand of X | {Y = y, S = s} for y ∈ {0, 1} and s ∈ {a, b}. Throughout the paper,

we consider class 1 as the ‘favored’ outcome for individuals, such as ‘being hired’, ‘receiving

promotion’, ‘admission to a college’, or ‘non-default’, and class 0 as the less-favored outcome

for individuals. In the meantime, we understand class 0 as the class that organizations concern

about and try to avoid, such as ‘default’.

2.2. Equality of opportunity (EO)

Let Ly(ϕ) :=
∣∣Ra

y(ϕ)−Rb
y(ϕ)

∣∣. In the literature of algorithmic fairness, a popular notion of

fairness, coined as ‘equalized odds’ (or ‘separation’), requires absolute equality across social

groups for any outcome, or L0(ϕ) = L1(ϕ) = 0 in our notation; see Barocas et al. (2019) and

the references therein. Hardt et al. (2016) formulated a less-stringent condition, referred to as

‘equality of opportunity’, which only requires L1(ϕ) = 0. That is, qualified people from different

social groups have equal opportunities to obtain the ‘favored’ outcome. This weaker notion of
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fairness is consistent with the advocacy of productive equity in social science and is acceptable

in a wide range of social contexts.

The requirement of absolute equality is, however, not practical for finite-sample based clas-

sifiers: due to the randomness of data, the population-level condition L1(ϕ) = 0 can hardly be

achieved from any finite-sample training procedure. Thus, researchers (e.g., Donini et al. (2018);

Agarwal et al. (2018)) worked on a relaxed criterion:

L1(ϕ) ≤ ε , (2)

for some pre-specified small ε. This condition states that equality of opportunity is satisfied if

for two groups, the difference in the probabilities of falsely classifying a “favored” outcome as

“unfavored” is sufficiently small. This less stringent criterion offers a flexible level of tolerance

and could be achieved by finite sample procedures with high probability. In this paper, we

adopt the relaxed EO condition described by equation (2), and refer to it as the EO constraint.

Furthermore, we refer to L1(ϕ) as the type II error disparity of the classifier ϕ.

2.3. Neyman-Pearson (NP) paradigm
Like other fairness criteria, the EO constraint draws a boundary to incorporate the societal con-

cern of fairness in algorithmic decision making. In the fairness literature, it was combined with

some general loss functions (e.g., Woodworth et al. (2017)). For example, it was incorporated

into the classical classification paradigm, which minimizes the overall classification error, i.e., a

weighted average of type I and type II errors, with the weights equal to the marginal probabili-

ties of the two classes. In many applications, however, these weights do not reflect the relative

importance of different error types; as a consequence, classifiers under the classical paradigm

could have undesirably high type I error (or type II error). The inclusion of a fairness criterion

can further complicate the problem by resulting in an (unintended) redistribution of the two

types of classification errors, as will be shown by Example 1 in Section 3.

Recall the loan application example. A bank wishes to classify loan applicants so as to

controlling the default risk (controlling the type I error) and gaining ample business opportunities

(maximizing 1 − type II error). The problem is that the two types of errors are statistically in

conflict and the bank has to balance the trade-off between the goals. Regulation from fairness

concerns (e.g., through the EO constraint) may help lift the bank’s bias against certain social

groups and enlarge its business opportunities (lower type II error), but it could also expose the

bank to greater default risk (higher type I error).

To cope with the above problem, we propose using the Neyman-Pearson (NP) paradigm

(Cannon et al., 2002; Scott and Nowak, 2005; Rigollet and Tong, 2011), which solves:

min
ϕ:R0(ϕ)≤α

R1(ϕ) , (3)

where α ∈ (0, 1) is a user-specified constant. In the loan example, an NP oracle classifier would

control the risk of classifying a default applicant as a non-default one, helping banks manage their

financial risk; after securing the financial safety, it minimizes the chances of classifying a non-

default applicant as a default one, giving banks the maximum possible business opportunities.
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2.4. NP-EO paradigm
We propose the NP-EO paradigm as follows:

min
R0(ϕ)≤α,L1(ϕ)≤ε

R1(ϕ) , (4)

where α, ε ∈ (0, 1) are pre-specified numbers. Program (4) has joint constraints: the NP con-

straint R0(ϕ) ≤ α which ensures the most important part of economic efficiency, and the EO

constraint L1(ϕ) ≤ ε which enforces the social fairness restriction. In this arrangement, the

direct impact of the EO constraint on the type I error R0 is isolated and the conflict between

efficiency and equality is absorbed by the type II error R1, which is assumed to be economically

less consequential. On the population level, we will derive an NP-EO oracle classifier, i.e., a

solution to program (4). On the sample level, we will construct finite sample based classifiers

that respect the two constraints in (4) with high probability.

Returning to the loan application example, a bank is concerned with two private goals—

controlling the default risk (R0) and expanding business opportunity (R1)—and a social goal

of maintaining equal opportunity (a small difference between Ra
1 and Rb

1). With the NP-EO

paradigm, the risk-control goal is achieved by the constraint R0(ϕ) ≤ α, where α is a risk

level chosen by the bank, and the social goal is achieved by the constraint L1(ϕ) ≤ ε, where ε is

determined by regulation or social norms. With these two goals, the bank has to be modest in the

business-expansion goal — potentially paying the cost of having a larger chance of misclassifying

non-defaulters as defaulters. While this cost could be more significant for startup banks at the

stage of customer expansion, it is small for established banks that have a large customer base.

3. NP-EO oracle classifier

In this section, we establish an NP-EO oracle classifier, a solution to the constrained optimization

program (4). The establishment of an NP-EO oracle classifier demands efforts because (i) the

simultaneous feasibility of the NP and EO constraints is not clear on surface, and (ii) the

functional form of the oracle is unknown.

Let fy,s(·) be the density function ofXy,s and Fy,s(z) = IP (f1,s(X) ≤ zf0,s(X) | Y = y, S = s),

for each y ∈ {0, 1} and s ∈ {a, b}. Moreover, we denote, for any ca, cb,

ϕ#
ca,cb(X,S) = 1I{f1,a(X) > caf0,a(X)} · 1I{S = a}+ 1I{f1,b(X) > cbf0,b(X)} · 1I{S = b} . (5)

Then, the following theorem holds.

Theorem 1. For each y ∈ {0, 1} and s ∈ {a, b}, we assume (i) fy,s exists, (ii) Fy,s(z) is

continuous on [0,∞), and (iii) Fy,s(0) = 0 and limz→∞ Fy,s(z) = 1. Then there exist two

non-negative constants c∗a and c∗b such that ϕ#
c∗a,c

∗
b
is an NP-EO oracle classifier.

The solution is intuitive: within each class, the choice should be a likelihood ratio and two

different thresholds are required in order to satisfy two constraints. The proof of Theorem 1 is

relegated to the Appendix. Here, we briefly sketch the idea. The existence assumption of fy,s’s

is necessary to write down a classifier in the form of equation (5). The assumptions on F0,a and
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#

Figure 1. Feasibility of NP-EO oracle. The downward curve represents the critical values ca and cb

in the classifier (5) such that the probability of type I error is α, whereas the upward curve depicts the

classifiers satisfying Ra
1 − Rb

1 = ε. The intersection of these two curves gives the critical values for the

NP-EO classifier.

F0,b ensure that R
a
0 and Rb

0 can take any value in (0, 1) by varying thresholds (ca, cb). Therefore,

R0, as a convex combination of Ra
0 and Rb

0, can achieve an arbitrary level α ∈ (0, 1). Similarly,

the conditions F1,a and F1,b guarantee that R
a
1 and Rb

1 can take any value in (0, 1). Thus, L1 = ε

can be achieved for arbitrary ε ∈ (0, 1). In sum, the conditions in Theorem 1 easily ensure that

proper choices of thresholds are sufficient to satisfy either NP or EO constraint. The reasoning

for simultaneous feasibility is more involved and we will demonstrate it on a special case shortly.

Note the Neyman-Pearson lemma implies that the NP oracle classifier (i.e., solution to pro-

gram (3)) is of the form

ϕ(x, s) = 1I

{
f1,s(x) · ps|1
f0,s(x) · ps|0

> c

}
= 1I

{
f1,a(x)

f0,a(x)
> c

pa|0

pa|1

}
· 1I{s = a}+ 1I

{
f1,b(x)

f0,b(x)
> c

pb|0

pb|1

}
· 1I{s = b} ,

for some constant c such that the NP constraint takes the boundary condition. It is easy to

see that the last expression in the above display is of the form in equation (5). If the NP

oracle classifier satisfies the EO constraint, then it is also an NP-EO oracle. If the NP oracle

classifier fails to satisfy the EO constraint, the generalized Neyman-Pearson lemma (Theorem

6 in Appendix) indicates that the oracle NP-EO classifier is of the form in equation (5), given

the existence of a pair of thresholds (ca, cb) that achieves R0 = α and L1 = ε.

The existence of such a pair in one scenario is illustrated by Figure 1, where we assume that

Ra
1 − Rb

1 > ε for the NP oracle. More general discussion can be found in the proof of Theorem

1. In Figure 1, the vertical and horizontal axes are ca and cb, representing respectively the

S = a and S = b part of the thresholds in the classifier in (5). Thus, every point in the first

quadrant represents such a classifier. In this figure, c′b is the constant such that its corresponding
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Rb
1 = 1− ε. The solid downward curve represents pairs (ca, cb) such that R0 = α; note that

R0(ϕ
#
ca,cb) = (1− F0,a(ca)) · pa|0 + (1− F0,b(cb)) · pb|0 ,

so when R0 is fixed at α, ca is non-increasing as cb increases, which is shown in Figure 1. At the

same time, the solid upward curve represents the threshold pairs (ca, cb) such that Ra
1 −Rb

1 = ε.

Since Ra
1(ϕ

#
ca,cb) − Rb

1(ϕ
#
ca,cb) = F1,a(ca) − F1,b(cb), so when Ra

1 − Rb
1 is fixed at ε, ca is non-

decreasing when cb increases, and hence the curve should be upward. As indicated in Figure

1, it can be shown that there must be an intersection of the two curves, which satisfies both

the NP and EO constraints. Then, the generalized Neyman-Pearson lemma implies that the

intersection must be an NP-EO oracle classifier.

Now we rationalize results in Theorem 1 on an intuitive level. Theorem 1 states that an NP-

EO oracle can be formed by two separate parts, namely, S = a component and S = b component.

This is understandable because, as long as a classifier ϕ takes into consideration the protected

attribute S, it can always be rewritten as a two-part form, i.e., ϕ(X,S) = ϕa(X) · 1I{S =

a}+ ϕb(X) · 1I{S = b}, where ϕa(·) = ϕ(·, a) and ϕb(·) = ϕ(·, b). Then, given the two-part form,

it is not surprising that the best ϕa and ϕb, in terms of group-wise type II error performance for

a type I error level, adopt density ratios as scoring functions. Thus, as long as the two thresholds

are adjusted so that NP and EO constraints are satisfied, the classifier in the form of equation

(5) will have smaller Ra
1 and Rb

1 than other feasible classifiers and thus a smaller R1.

We now present a simple example to illustrate the NP-EO oracle.

Example 1. Let X0,a, X1,a, X0,b and X1,b be N (0, 1),N (4, 1),N (0, 9) and N (4, 9) distributed

random variables, respectively, and set IP(S = a, Y = 0) = IP(S = a, Y = 1) = IP(S = b, Y =

1) = IP(S = b, Y = 1) = 0.25. Then, the Bayes classifier is ϕBayes = 1I{X > 2} and the NP

oracle classifier for α = 0.1 is ϕNP = 1I{X > 2.58}.3 If α = ε = 0.1, the NP-EO oracle classifier

is ϕNP-EO = 1I{X > 3.20}1I{S = a} + 1I{X > 2.53}1I{S = b}. The graphical illustration of this

example is depicted in Figure 2. We can calculate that R0(ϕBayes) = 0.137, R1(ϕBayes) = 0.137

and L1(ϕBayes) = 0.23, violating both NP and EO constraints. The NP oracle, compared with

the Bayes classifier, has a larger threshold. Consequently, R0(ϕNP) = 0.1, R1(ϕNP) = 0.198

and L1(ϕNP) = 0.24. The NP oracle classifier satisfies the NP constraint but violates the EO

constraint. The NP-EO oracle classifier is more subtle. Its S = a part threshold is larger than

that of NP oracle classifier whereas the S = b part threshold is slightly smaller, resulting in

R0(ϕNP-EO) = 0.100, R1(ϕNP-EO) = 0.262 and L1(ϕNP-EO) = 0.1, so that the NP-EO oracle

classifier satisfies both NP and EO constraints.

An NP-EO oracle classifier has a nice property: it is invariant to the changes in the propor-

tions of class labels. This insight is concretized by the following proposition.

3 In this example, the sensitive attribute S does not appear in the Bayes classifier or in the NP oracle

classifier because the thresholds are the same for the S = a and S = b components. Thus, S can be

omitted due to the specific setup of this model.
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Figure 2. Plots of three classifiers in Example 1. The three rows, from top to bottom, represent figure

illustration of the Bayes classifier, NP oracle classifier and NP-EO oracle classifier, respectively. The

left panel illustrates the densities of X0,a and X1,a and the right panel those of X0,b and X1,b. In every

sub-figure, the green curve represents class 0 density and the orange curve represents class 1 density.

In each row, the two thresholds of the classifier are indicated by the two black vertical lines. The type I

and type II errors conditional on sensitive attribute are depicted respectively as the light green and light

orange regions in every sub-figure with their values marked.

Proposition 1. Under conditions of Theorem 1, an NP-EO oracle classifier is invariant to

the change in IP(Y = 0) (or equivalently IP(Y = 1)), as long as the distributions of X | (Y =

y, S = s) (i.e., Xy,s) and S | (Y = y) stay the same for each y ∈ {0, 1} and s ∈ {a, b}.

4. Methodology

In this section, we propose two sample-based NP-EO umbrella algorithms. Theorem 1 indicates

that the density ratios are the best scores, with proper threshold choices. Hence plugging the

density ratio estimates in equation (5) would lead to classifiers with good theoretical properties.

In practice and more generally, however, practitioners can and might prefer to use scores from

canonical classification methods (e.g., logistic regression and neural networks), which we also

refer to as base algorithms. Inspired by (5), we construct classifiers of the generic form

ϕ̂(X,S) = 1I{T a(X) > ca} · 1I{S = a}+ 1I{T b(X) > cb} · 1I{S = b} , (6)
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where T a(·) and T b(·) are given scoring functions for groups S = a and S = b, respectively, and

our task is to choose proper data-driven thresholds ca and cb that take into account the NP and

EO constraints. This form is inspired by the NP-EO oracle classifier in the previous section by

regarding T a and T b as the density ratios. We leave the more theory-oriented investigation on

density ratio plug-ins for the future.

The classifier ϕ̂ in (6) is trained on finite sample; thus it is random due to randomness of

the sample, and the constraints in program (4) cannot be satisfied with probability 1 in general.

Therefore, we aim to achieve high-probability NP and EO constraints as follows,

IP
(
R0(ϕ̂) > α

)
≤ δ , (7)

IP
(
L1(ϕ̂) > ε

)
≤ γ , (8)

for pre-specified small δ, γ ∈ (0, 1). Here, IP is taken over the randomness of the training sample.

In Sections 4.1 and 4.2, we will present two umbrella algorithms: NP-EOOP and NP-EOMP.

The meaning of their names will become clear later. NP-EOOP is simpler and computationally

lighter than NP-EOMP. It is also “safer” in the sense that it achieves at least 1− δ probability

type I error control whereas NP-EOMP is only theoretically guaranteed to achieve at least

1− δ+ probability control for some δ+ ↘ δ as sample size grows. However, NP-EOOP sacrifices

the power. In contrast, NP-EOMP achieves smaller type II error and does not violate exact

high-probability NP constraint in numerical analysis, as demonstrated in Section 5. Moreover,

NP-EOMP is a generalization of NP-EOOP in terms of threshold selection. Thus, it is convenient

for readers to encounter NP-EOOP first.

4.1. The NP-EOOP umbrella algorithm
We now construct an algorithm that respects (7) and (8)4, and achieves type II error as small

as possible. Denote by Sy,s the set of X feature observations whose labels are y and sensitive

attributes are s, where y ∈ {0, 1} and s ∈ {a, b}. We assume that all the Sy,s’s are independent,
and instances within each Sy,s are i.i.d. Each Sy,s is divided into two halves: Sy,strain for training

scoring functions, and Sy,sleft-out for estimating the thresholds in the classifier (6).

First, all Sy,strain’s are combined together to train a scoring function (e.g., sigmoid function in

logistic regression) T : X × {a, b} 7→ IR; then we take T a(·) = T (·, a) and T b(·) = T (·, b). To

determine ca and cb, we select pivots to fulfill the NP constraint first and then adjust them for the

EO constraint. A prior result leveraged to achieve the high-probability NP constraint is the NP

umbrella algorithm developed by Tong et al. (2018). This algorithm adapts to all scoring-type

classification methods (e.g., logistic regression and neural-nets), which we now describe. For an

arbitrary (random) scoring function S : X 7→ IR and i.i.d. class 0 observations {X0
1 , X

0
2 , · · · , X0

n},
a classifier that controls type I error under α with probability at least 1 − δ and achieves

small type II error can be built as 1I{S(X) > s(k∗)}, where s(k∗) is the (k∗)th order statistic

of {s1, s2, · · · , sn} := {S(X0
1 ), S(X

0
2 ), · · · , S(X0

n)} and k∗ is the smallest k ∈ {1, 2, · · · , n} such

4 Strictly speaking, we only achieve γ+ in (8), where γ+ ↘ γ as sample size diverges.
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that
∑n

j=k

(
n
j

)
(1 − α)jαn−j ≤ δ. The smallest such k is chosen to achieve the smallest type II

error. The only condition for this high-probability type I error control is n ≥ ⌈log δ/ log(1−α)⌉,
a mild sample size requirement. More details of this algorithm are recollected from Tong et al.

(2018) and provided in Appendix A.1.

Motivated by the NP umbrella algorithm, we apply T s(·) to each instance in Sy,sleft-out to obtain

T y,s = {ty,s1 , ty,s2 , · · · , ty,sny
s
}, where ny

s = |Sy,sleft-out|, y ∈ {0, 1}, and s ∈ {a, b}. A natural starting

point is to apply the NP umbrella algorithm (Tong et al., 2018) to the data with sensitive

attributes a and b separately so that they both satisfy the NP constraint (7). Concretely,

from the sorted set T 0,a = {t0,a(1), t
0,a
(2), · · · , t

0,a
(n0

a)
}, the pivot t0,a

(k0,a
∗ )

is selected as the
(
k0,a∗

)th
order

statistic in T 0,a, where k0,a∗ is the smallest k ∈ {1, · · · , n0
a} such that

∑n0
a

j=k

(
n0

a

j

)
(1−α)jαn0

a−j ≤ δ.

The pivot t0,b
(k0,b

∗ )
is selected similarly on T 0,b. If ca ≥ t0,a

(k0,a
∗ )

and cb ≥ t0,b
(k0,b

∗ )
, then the classifier ϕ̂

in (6) satisfies

IP
(
Ra

0(ϕ̂) > α
)
≤ δ and IP

(
Rb

0(ϕ̂) > α
)
≤ δ , (9)

by Proposition 1 in Tong et al. (2018). In view of (1), the above inequalities guarantee that the

NP constraint can be achieved with probability at least 1 − 2δ. If we want to strictly enforce

the 1− δ probability type I error control in theory as in inequality (7), the δ parameter in our

algorithm can be replaced by δ/25.

The next step is to adjust the thresholds so that the resulting classifier also satisfies in-

equality (8), i.e., the high-probability EO constraint. To keep the NP constraint, we increase

the values of thresholds for both groups. Similar to T 0,a and T 0,b, we denote the sorted

T 1,s = {t1,s(1), t
1,s
(2), · · · , t

1,s
(n1

s)
} for s ∈ {a, b} and select ca from T 1,a and cb from T 1,b in order

to facilitate the power calculation. Let

la =

n1
a∑

j=1

1I
{
t1,aj ≤ t0,a

(k0,a
∗ )

}
and lb =

n1
b∑

j=1

1I
{
t1,bj ≤ t0,b

(k0,b
∗ )

}
. (10)

Then, ca is selected from {t1,a(j) : la < j ≤ n1
a} and cb is selected from {t1,b(j) : lb < j ≤ n1

b} so that

(9) holds. To this end, we investigate the distributions of

ra1(i) = IPX1,a

(
T a(X1,a) ≤ t1,a(i)

)
and rb1(j) = IPX1,b

(
T b(X1,b) ≤ t1,b(j)

)
,

for i > la and j > lb. They are respectively the S = a and S = b components of the type II

error of the classifier in (6), if we take ca = t1,a(i) and cb = t1,b(j); they are random because only the

randomness of X1,a and X1,b are taken in IPX1,a and IPX1,b . We need to understand these two

quantities, so as to choosing from all eligible pairs i and j that satisfy the EO constraint.

The left hand side of the inequality in equation (8) can be written as IP
(∣∣ra1(i)− rb1(j)

∣∣ > ε
)
,

since we can consider the scoring function T (·) (and hence T a(·) and T b(·)) as fixed due to

independent pretraining of T (·). Since the random variables ra1(i) and rb1(j) are independent

and admit similar definitions, we need only to study one of them as follows.

5 However, numerical results in Section 5 suggest that this extra cautionary measure does not seem to

be necessary in practice, because the subsequent EO adjustment step gears our algorithm towards the

more conservative direction for type I error control.
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Let X and Y1, Y2, · · · , Yn be continuous, independent and identically distributed random

variables. Moreover, let c be a random variable that is independent of X,Y1, · · · , Yn and define

by l =
∑n

j=1 1I{Yj ≤ c}. Our goal is to approximate the distribution of IPX(X ≤ Y(k)) conditional

on l for k > l, which is needed for ra1(i) and rb1(j). Note that the conditional probability does

not depend on the original distribution of X and

IPX(X ≤ Y(k) | l) = IPX(X ≤ Y(l) | l) + IPX(Y(l) < X ≤ Y(k) | l) .

By using the property of the uniform order statistics, it can be shown that the above quantity

has the same distribuion as gc,l + (1− gc,l)Bk−l,n−k+1 for k > l with independent random

variables gc,l = IP(Y1 ≤ c | l) and Bk−l,n−k+1 ∼ Beta(k− l, n−k+1). It remains to approximate

the distribution of gc,l, which is l/n if c is a constant. Recall that c is a random variable and

gc,l = E(F (c)|l) where F is the cdf of Y1. Writing θ = F (c), from the Bayesian point of view, the

distribution of gc,l is the posterior distribution of θ given n i.i.d. Bernoulli(θ) observations with

sufficient statistic l. By Bernstein-von Mises theorem, gc,l is “close” to be normally distributed

with mean l/n (MLE in frequestist view) and variance equal to the Fisher information of the

Bernoulli trial at MLE: n−1(l/n)(1− l/n).

The above discussion reveals that the distribution of (ra1(i) | la) can be approximated byG1,a+

(1−G1,a)Bi−la,n1
a−i+1 where G1,a ∼ N

(
la
n1

a
, la/n

1
a(1−la/n1

a)
n1

a

)
. Similarly, the distribution of (rb1(j) |

lb) can be approximated. Let F 1,a(i) and F 1,b(j) be two independent random variables such

that F 1,a(i) = G1,a + (1−G1,a)Bi−la,n1
a−i+1, in distribution and F 1,b(j) is defined analogously.

Then, we can pick (i, j) such that

IP
(∣∣∣F 1,a(i)− F 1,b(j)

∣∣∣ > ε
)
≤ γ . (11)

Among these feasible pairs, the one that minimizes the empirical type II error, which can be

calculated as ((i− 1) + (j − 1)) /(n1
a + n1

b), should be selected; i.e., we select

(k∗a, k
∗
b ) = min

all feasible (i,j) that satisfy(11)

i+ j − 2

n1
a + n1

b

. (12)

The process to arrive at (k∗a, k
∗
b ) is illustrated in Figure 3. We propose an NP-EO classifier

ϕ̂∗(X,S) = 1I{T a(X) > t1,a(k∗
a)
} · 1I{S = a}+ 1I{T b(X) > t1,b(k∗

b )
} · 1I{S = b} .

Note that, if none of i ∈ {la + 1, · · · , n1
a} and j ∈ {lb + 1, · · · , n1

b} satisfy inequality (11), we

say our algorithm does not provide a viable NP-EO classifier. This kind of exceptions have not

occured in simulation or real data studies.

We summarize the above NP-EO umbrella algorithm in Algorithm 1. Note that in Step 8,

the NP violation rate control at δ/2 is needed for theoretical purpose (c.f. Theorem 2 and its

proof). We will demonstrate through numerical analysis that it suffices to use δ instead. We

also note that the steps to reach (k∗a, k
∗
b ) is summarized as the EO violation algorithm (Step 10)

inside Algorithm 1, also presented separately as Algorithm 3 in the appendix for clarity. The

next theorem provides a theoretical guarantee for ϕ̂∗(X,S).
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Figure 3. A cartoon illustration of the choices of k∗a and k∗b . They are moved in the NP contrained feasible

region (to the left) to search for the pairs that satisfy the EO constraint and to pick the most powerful pair.

For every T y,s, the circles, or squares, in its corresponding row represent its sorted elements, ascending

from left to right.

Algorithm 1: NP-EOOP umbrella algorithm [“OP” stands for One (pair of) Pivots]

Input : Sy,s: X observations whose label y ∈ {0, 1} and sensitive attribute s ∈ {a, b}
α: upper bound for type I error

δ: type I error violation rate target

ε: upper bound for the type II error disparity

γ: type II error disparity violation rate target

1 Sy,strain,S
y,s
left-out ← random split on Sy,s for y ∈ {0, 1} and s ∈ {a, b}

2 Strain ← S0,atrain ∪ S
0,b
train ∪ S

1,a
train ∪ S

1,b
train

3 T ← base classification algorithm(Strain) ; // T (·, ·) : X × {a, b} 7→ IR

4 T s(·)← T (·, s) for s ∈ {a, b}
5 T y,s ← T s(Sy,sleft-out) for y ∈ {0, 1} and s ∈ {a, b}
6 ny

s ← |T y,s| for y ∈ {0, 1} and s ∈ {a, b}
7 T y,s = {ty,s(1), t

y,s
(2), · · · , t

y,s
(ny

s)
} for y ∈ {0, 1} and s ∈ {a, b}

8 k0,s∗ ← the NP umbrella algorithm(n0
s, α, δ/2) for s ∈ {a, b}

9 ls ← max{k ∈ {1, 2, · · · , n1
s} : t

1,s
(k) ≤ t0,s

(k0,s
∗ )
} for s ∈ {a, b}

10 k∗a, k
∗
b ← EO violation algorithm(la, lb, n

1
a, n

1
b , ε, γ) in Appendix C.

Output: ϕ̂∗(X,S) = 1I{T a(X) > t1,a(k∗
a)
} · 1I{S = a}+ 1I{T b(X) > t1,b(k∗

b )
} · 1I{S = b}

Theorem 2. Let ϕ̂∗(·, ·) be the classifier output by Algorithm 1 with parameters (α, δ/2, ε, γ).

Assume that the scoring function T (·, ·) is trained such that T s(Xy,s) is a continuous random

variable whose distribution function is strictly monotone for each y ∈ {0, 1} and s ∈ {a, b}, and
that all distribution functions for T s(Xy,s) have the same support. Furthermore, assume that
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min{n0
a, n

0
b} ≥ log(δ/2)/ log(1− α) Then it holds simultaneously that

(a) IP
(
R0(ϕ̂

∗) > α
)
≤ δ and (b) IP

(
|Ra

1(ϕ̂
∗)−Rb

1(ϕ̂
∗)| > ε

)
≤ γ + ξ(n1

a, n
1
b) ,

in which ξ(n1
a, n

1
b) converges to 0 as n1

a and n1
b diverge.

In Theorem 2, the conditions for distributions of T s(Xy,s) ensure that the Bernstein-von Mises

theorem can be invoked. Indeed, take the S = a component for example, this theorem is applied

to the class of binomial sample la defined in equation (10), whose probability of success rate is

IPX1,a

(
T a(X1,a) ≤ t1,a(i)

)
. The key issue here is that this random probability needs to be in the

interior of [0, 1] with probability 1, which is guaranteed by assumptions on T s(Xy,s). Next, the

assumptions for n0
a and n0

b , adapted from Tong et al. (2018), are mild sample size requirements

to ensure the high-probability NP constraint (c.f. part (a) of Theorem 2). We note that part (b)

of Theorem 2 states that the type II error disparity violation rate can be controlled by γ plus

a term that vanishes asymptotically. This extra term, asymptotically negligible, is the price for

the errors of Gaussian approximation on the distributions of ra1 and rb1.

4.2. The NP-EOMP umbrella algorithm
Algorithm 1 (NP-EOOP) employs a “conservative” approach. Concretely, one pair of pivots,

selected to ensure high-probability control on Ra
0 and Rb

0 simultaneously, serves as the lower

bounds for the final thresholds. However, it could be suboptimal to control both Ra
0 and Rb

0,

as our goal is to control R0; indeed, it can induce unnecessarily small R0, leading to large

R1 and hurting the power of the classifier. To amend this, we can start from a sensitive-

attribute-agnostic NP classifier, and then adjust the thresholds for both groups while maintaining

the overall type I error control. This gives us a wider class of pivots (than in the NP-EOOP

algorithm), and thus enables us to search for a more powerful classifier.

In our second and more general version of the NP-EO umbrella algorithm, we assume a

slightly different sampling scheme for theoretical purpose. Denote by Sy the set of (X,S) feature

observations whose labels are y, where y ∈ {0, 1}. We assume that S0 and S1 are independent

and the instances within each Sy are i.i.d. Let Sy,s be the set of X feature observations within

Sy whose sensitive attribute is s, where s ∈ {a, b}. Under this sampling scheme, we assume that

ny = |Sy| is deterministic for y ∈ {0, 1}. Denote by ny
s = |Sy,s|; then ny

a and ny
b are random,

and ny = ny
a + ny

b . Recall that we also denote ps|y = IP(S = s | Y = y). Each Sy,s is split

equally into Sy,strain and Sy,sleft-out. Training of scoring function T (and thus T a and T b) is the same

as in Algorithm 1, and the scoring function T is again applied to all elements in Sy,sleft-out to

obtain the set of scores, T y,s, where y ∈ {0, 1} and s ∈ {a, b}. Similar to the approach outlined

in Section 4.1, we first address the NP constraint. However, instead of two sensitive-attribute-

specific thresholds, we start with an intermediate classifier that has the same threshold for both

groups:

ϕ̂∗(X,S) = 1I{T (X,S) > t0(k∗)
}

= 1I{T a(X) > t0(k∗)
}1I{S = a}+ 1I{T b(X) > t0(k∗)

}1I{S = b} , (13)
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where t0(k∗)
is the (k∗)

th order statistic in T 0 = T 0,a∪T 0,b and k∗ is selected by the NP umbrella

algorithm on T 0. This threshold selection guarantees that R0(ϕ̂∗) is controlled under α with

high probability. We will use ϕ̂∗ as a bridge. Concretely, if a classifier of the form in (6) admits

the same empirical type I error on T 0 as ϕ̂∗, their population-level type I errors should be close,

and thus they can be both controlled under α with probability close to 1−α. One can see that

ϕ̂∗ makes k0a + k0b correct classifications on T 0, where

k0a =

n0
a∑

j=1

1I{t0,aj ≤ t0(k∗)
} and k0b =

n0
b∑

j=1

1I{t0,bj ≤ t0(k∗)
} . (14)

In fact, if any t0,a(ka)
∈ T0,a and t0,b(kb)

∈ T0,b, where ka ∈ [n0
a] and kb ∈ [n0

b ], are chosen as the

thresholds for T a and T b respectively, then as long as ka + kb = k0a + k0b , a classifier would

have the same empirical type I error on T 0 as ϕ̂∗. Thus, to respect the high-probability NP

constraint, we might choose any pair of thresholds ca, cb such that ca ≥ t0,a(ka)
and cb ≥ t0,b(kb)

,

where the pivots t0,a(ka)
and t0,b(kb)

satisfy ka + kb = k0a + k0b . This larger collection of pivot pairs

makes power improvement possible.

The next goal is to satisfy the high-probability EO constraint. Here, the steps and reasoning

are similar to Algorithm 1. Let la(ka) and lb(kb), functions of ka and kb, be defined analo-

gously to (10), with t0,a
(k0,a

∗ )
and t0,b

(k0,b
∗ )

replaced by t0,a(ka)
and t0,b(kb)

, respectively. Denote by ℓa =

{la(1), · · · , la(n0
a)}, and ℓb = {lb(1), · · · , lb(n0

b)}. Similar to (10), as long as the two thresholds

ca, cb are selected from
{
t1,a(j) : la(ka) + 1 < j ≤ la(ka + 1)

}
and

{
t1,b(j) : lb(kb) + 1 < j ≤ lb(kb + 1)

}
,

respectively,6 and ka+kb = k0a+k0b , the high probability NP constraint can be respected. Write

IP
(∣∣∣ra1(i)− rb1(j)

∣∣∣ > ε
)
= IEsr,ℓa,ℓbIP

(∣∣∣ra1(i)− rb1(j)
∣∣∣ > ε | sr, ℓa, ℓb

)
. (15)

In the above, sr stores the vector of the sensitive attributes associated with all instances in

Sy,sleft-out’s for y ∈ {0, 1} and s ∈ {a, b}. Recall that ra1(i) and rb1(j) are Ra
1 and Rb

1 if t1,a(i) and t1,b(j)

are selected as thresholds. The next step is to approximate the conditional distributions of ra1(i)

and rb1(j).

The arguments here are similar to the ones in Section 4.1 and we will start from a simi-

lar motivating example. Let X and Y1, Y2, · · · , Yn be continuous, independent, and identically

distributed random variables. Now, let c1, c2, · · · , cm be i.i.d. random variables that are inde-

pendent of X,Y1, · · · , Yn and define li =
∑n

j=1 1I{Yj ≤ ci} for i ∈ [m] and ℓ = {l1, · · · , lm}. We

will approximate the distribution of IPX(X ≤ Y(k)) conditional on ℓ, which equals

IPX(X ≤ Y(k)) | ℓ
d
=


Bk,l(1)−k+1G

(1)
c,ℓ , k ≤ l(1) ,

G
(p)
c,ℓ + (G

(p+1)
c,ℓ −G

(p)
c,ℓ )Bk−l(p),l(p+1)−k+1, l(p) < k ≤ l(p+1), p ∈ [m− 1] ,

G
(m)
c,ℓ + (1−G

(m)
c,ℓ )Bk−l(m),n−k+1 , k > l(m) ,

where
d
= means “equal in distribution”, Bp,q ∼ Beta(p, q) and

6 For simplicity of narrative, la(n
0
a + 1) and la(n

0
a + 1) are set to n1

a and n1
b , respectively.
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Gc,ℓ :=
[
G

(1)
c,ℓ , G

(2)
c,ℓ , · · · , G

(m)
c,ℓ

]⊤
:= [IPY1

(Y1 ≤ c(1)), IPY1
(Y1 ≤ c(2)), · · · , IPY1

(Y1 ≤ c(m))]
⊤ | ℓ .

Here, Gc,ℓ and the Beta random variables are independent. The next step is to approximate

the distribution of Gc,ℓ. With a slight abuse of notation, denote c(0) = −∞, c(m+1) = +∞ and

l(0) = 0, l(m+1) = n. It suffices to consider the joint distribution of the quantity

∆Gc | ∆ℓ := [IPY1

(
c(j−1) < Y1 ≤ c(j)

)
, j ∈ [m+ 1]]⊤ | [l(i) − l(i−1), i ∈ [m]]⊤ .

For fixed cj , ∆Gc = [IPY1

(
c(j−1) < Y1 ≤ c(j)

)
, j ∈ [m + 1]]⊤ can be viewed as the vector of

probabilities for a multinomial distribution, and ∆ℓ = [l(i)− l(i−1), i ∈ [m+1]]⊤ is a multinomial

random variable of size n generated from this distribution. Then, the maximum likelihood

estimator for ∆Gc is
∆ℓ
n . Therefore, when cj is random for j ∈ [m], the distribution of ∆Gc | ∆ℓ

is the posterior distribution of ∆Gc given ∆ℓ, and thus, by invoking Bernstein-von Mises theorem

again, is “close to” Gaussian centered at ∆ℓ
n with covariance matrix Σ where

Σi,j =

 1
n IPY1

(
c(j−1) < Y1 ≤ c(j)

) (
1− IPY1

(
c(j−1) < Y1 ≤ c(j)

))
, i = j ,

− 1
n IPY1

(
c(i−1) < Y1 ≤ c(i)

)
IPY1

(
c(j−1) < Y1 ≤ c(j)

)
, i ̸= j .

Furthermore, we can use (l(j) − l(j−1))/n to replace IPY1

(
c(j−1) < Y1 ≤ c(j)

)
and obtain an esti-

mated covariance matrix Σ̂. Thus, the estimation of IPX(X ≤ Y(k)) | ℓ is finished.

Despite being lengthy, it is actually straightforward to relate this example with the problem in

this section. Recall that in view of (15), the goal is to approximate the distribution of (ra1(i) | ℓa).
Note that conditional on scoring function T a and sr, the scores t1,a, t1,a1 , t1,a2 , · · · , t1,an1

a
are i.i.d.

random variables, and t0,a1 , t0,a2 , · · · , t0,an0
a
are also i.i.d. random variables. Furthermore, the two

groups of random variables are mutually independent. Moreover, ra1(i) = IPt1,a

(
t1,a ≤ t1,a(i)

)
and

la(j) =
∑n1

a

h=1 1I{t
1,a
h ≤ t0,a(j)} for every i ∈ [n1

a] and j ∈ [n0
a]. Therefore, the problem setting

is in line with the previous motivating example, and thus, the distribution of ra1(i) | ℓa can be

approximated in the same way. And the same procedure can be applied to the S = b component.

To conclude, we select i and j such that

IP
(∣∣∣F̃ 1,a(i)− F̃ 1,b(j)

∣∣∣ > ε
)
≤ γ , (16)

where

F̃ 1,a(i)
d
=


Bk,la(1)−k+1G̃

1,a
1 , k ≤ la(1) ,

G̃1,a
p +

(
G̃1,a

p+1 − G̃1,a
p

)
Bk−la(p),la(p+1)−k+1, la(p) < k ≤ la(p+ 1), p ∈ [n0

a − 1] ,

G̃1,a
n0

a
+ (1− G̃1,a

n0
a
)Bk−la(n0

a),n
1
a−k+1, k > la(n

0
a) ,

and G̃1,a =
[
G1,a

1 , · · · , G1,a
n0

a

]⊤
is a Gaussian vector with mean [la(1)/n

1
a, . . . , la(n

0
a)/n

1
a]

⊤ and

covariance matrix
(da(1)/n1

a)(1−da(1)/n1
a)

n1
a

− (da(1)/n1
a)(da(2)/n1

a)
n1

a
· · · − (da(1)/n1

a)(da(n0
a+1)/n1

a)
n1

a

− (da(2)/n1
a)(da(1)/n1

a)
n1

a

(da(2)/n1
a)(1−da(2)/n1

a)
n1

a
· · · − (da(2)/n1

a)(da(n0
a+1)/n1

a)
n1

a

...
...

. . .
...

− (da(n1
a+1)/n1

a)(da(1)/n1
a)

n1
a

− (da(n1
a+1)/n1

a)(da(2)/n1
a)

n1
a

· · · (da(n0
a+1)/n1

a)(1−da(n0
a+1)/n1

a)
n1

a

 .
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Here,

da(k) =


la(1), k = 1 ,

la(k + 1)− la(k), k = 2, 3, · · · , n0
a − 1 ,

n1
a − la(n

0
a), k = n0

a .

Moreover, F̃ 1,b(j) is defined analogously. Details of this approximation can be found in Algo-

rithm 4 in the Appendix. Next, one pair of i and j needs to be selected among all possible pairs

satisfying (16). In Algorithm 1, we traverse all feasible pairs of i and j and choose one that

minimizes the empirical type II error. It was computationally feasible because only i, j such that

t1,a(i) > t0,a
(k0,a

∗ )
and t1,b(j) > t0,b

(k0,b
∗ )

were considered. However, our generalized algorithm NP-EOMP

has multiple pairs of pivots and it could be time-consuming to do the same. Therefore, we adopt

the following heuristics:

(a) Compute t0(k∗)
by the NP umbrella algorithm. Then, select k0a and k0b by (14) and set

ka = k0a and kb = k0b .

(b) Given ka and kb, set i = la(ka)+ 1 and j = lb(kb)+ 1, i.e., i is such that t1,a(i) is the smallest

element in T 1,a larger than t0,a(ka)
, and j is selected analogously.

(c) Apply Algorithm 4 to i, j7 to calculate the approximate one-sided EO violation rates

IP(F̃ 1,a(i) − F̃ 1,b(j) ≥ ε) and IP(F̃ 1,b(j) − F̃ 1,a(i) ≥ ε). If the former approximation is

larger than γ, i.e., F̃ 1,a(i) is too large, increase kb by 1 and decrease ka by 1. If the latter

approximation is larger than γ, increase ka by 1 and decrease kb by 1.

(d) Repeat Steps (b) - (c) until the approximate value IP(|F̃ 1,a(i) − F̃ 1,b(j)| ≥ ε) is smaller

than or equal to γ, then use t1,a(i) and t1,b(j) as thresholds.
8

Let us briefly discuss the above procedure. After key quantities t0(k∗)
, k0a, and k0b are deter-

mined, ka and kb are set to k0a and k0b , respectively, in Step (a). In Step (b) and (c), an iterative

method is used to find i and j that satisfy (16). For a pair of ka and kb, we only look at i and

j such that t1,a(i) and t1,b(j) are the smallest elements in T 1,a and T 1,b that are larger than t0,a(ka)

and t0,b(kb)
, respectively. If this pair of i and j fails to satisfy (16), we adjust ka and kb, and then

update i and j accordingly. For example, if IP(F̃ 1,a(i) − F̃ 1,b(j) ≥ ε) > γ, i.e., F̃ 1,a(i) is too

large and F̃ 1,b(j) is too small, we decrease ka by 1 and increase kb by 1, so that ka+kb = k0a+k0b
and thus high-probability NP constraint is respected. After ka and kb are updated, i and j

are selected in the same way described above. This updating procedure can be done iteratively

until (16) is reached. Then, the scores t1,a(i) and t1,b(j) are selected as the thresholds of the resulting

classifier.

This more general version of NP-EO umbrella algorithm is summarized as Algorithm 2. In-

stead of using only one pair of pivots in Algorithm 1, Algorithm 2 uses multiple pairs. Concretely,

the two pivots t0,a(ka)
and t0,b(kb)

can be increased or decreased based on their resulting one-sided

7 i, j are inputs as k(a) and k(b) in Algorithm 4.
8 There are exceptions where Step (d) cannot be achieved by repeating Steps (b) - (c). However, these

can be handled subtly by adjusting i and j. Details are included in Algorithm 5 in the Appendix.
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Algorithm 2: NP-EOMP umbrella algorithm [“MP” means Multiple (Pairs of) Pivots]

Input : Sy,s: X observations whose label y ∈ {0, 1} and sensitive attribute s ∈ {a, b}
α: upper bound for type I error

δ: type I error violation rate target

ε: upper bound for the type II error disparity

γ: type II error disparity violation rate target

1 Sy,strain,S
y,s
left-out ← random split on Sy,s for y ∈ {0, 1} and s ∈ {a, b}

2 Strain ← S0,atrain ∪ S
0,b
train ∪ S

1,a
train ∪ S

1,b
train

3 T ← base classification algorithm(Strain) ; // T (·, ·) : X × {a, b} 7→ IR

4 T s(·)← T (·, s) for s ∈ {a, b}
5 T y,s ← T s(Sy,sleft-out) for y ∈ {0, 1} and s ∈ {a, b}
6 ny

s ← |T y,s| for y ∈ {0, 1} and s ∈ {a, b}
7 T 0 = T 0,a ∪ T 0,b = {t0(1), t

0
(2), · · · , t

0
(n0)}, where n0 = n0

a + n0
b

8 T y,s = {ty,s(1), t
y,s
(2), · · · , t

y,s
(ny

s)
} for y ∈ {0, 1} and s ∈ {a, b}

9 k∗ ← the NP umbrella algorithm(n0, α, δ)

10 {ls(1), · · · , ls(n0
s)} ←

{∑n1
s

j=1 1I{t
1,s
j ≤ t1,s(1)}, · · · ,

∑n1
s

j=1 1I{t
1,s
j ≤ t1,s(n1

s)
}
}

for s ∈ {a, b}

11 ks ← k0s ←
∑n0

s

j=1 1I{t
0,s
j ≤ t0(k∗)

} for s ∈ {a, b}
12 (k∗a, k

∗
b )← Order selection algorithm(ks, n

y
s , ls(1), · · · , ls(n0

s), ε, γ) for s ∈ {a, b}
Output: ϕ̂∗∗(X,S) = 1I{T a(X) > t1,a(k∗

a)
} · 1I{S = a}+ 1I{T b(X) > t1,b(k∗

b )
} · 1I{S = b}

type II error disparities. Algorithm 1 controls Ra
0 and Rb

0 simultaneously to achieve the high-

probability NP constraint. Algorithm 2, however, relieves the control on one of them but uses

the empirical type I errors as a bridge to have an “approximate control” on the population-level

type I error. This increases the risk of failing the exact probability target of type I error control.

However, the advantage of this less conservative approach is obvious: lowering the pivot on one

side allows a higher classification power. Indeed, numerical evidence from Section 5.1 suggests

that Algorithm 2 has a lower type II error compared to Algorithm 1 and a higher type I error.

Furthermore, both algorithms satisfy high-probability NP and EO constraints. Same as in Sec-

tion 4.1, in theory there could be exceptions that no (i, j) satisfies (16). However, we have not

met this exception in data analysis.

Now we are ready to present the theoretical guarantee for Algorithm 2. Since the empirical

type I errors are used as a bridge to link the population-level type I errors for different pairs

of pivots, a concentration of empirical type I errors towards population-level type I error is

needed. Thus, in the following theoretical result, we allow an η-error between empirical and

population-level type I errors. That is, the target probability for type I error control will be set

at α− η where η is a small number compared with α. However, this is not needed in numerical

implementation of Algorithm 2.

Theorem 3. Let ϕ̂∗∗(·, ·) be the classifier output by Algorithm 2 with parameters (α−η, δ, ε, γ)
for 0 < η ≪ α. Assume that the scoring function T (·, ·) is trained such that the same conditions
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in Theorem 2 hold and that n0 ≥ log(δ)/ log(1− α). Then it holds simultaneously that

(a) IP
(
R0(ϕ̂

∗∗) > α
)
≤ δ + 2e−

1

32
n0(pa|0−η/8)η2

+ 2e−
1

32
n0(pb|0−η/8)η2

+ 2e−
1

32
n0η2

+ 2e−
1

2
n0η2

,

(b) IP
(
|Ra

1(ϕ̂
∗∗)−Rb

1(ϕ̂
∗∗)| > ε

)
≤ γ + ξ′(n1) ,

in which ξ′(n1) converges to 0 as n1 = n1
a + n1

b diverges.

The proof of this theorem is presented in the Appendix. Here, we remark that the main

difference between Theorems 2 and 3 is in part (a). In Theorem 2, the type I error is controlled

with probability at least 1− δ, whereas in Theorem 3, ϕ̂∗∗ only gives an “approximately” 1− δ

type I error control. This is not surprising since we use empirical type I errors to estimate

population-level type I error for ϕ̂∗∗ and thus to make sure their population-level type I errors

are close by matching the empirical type I errors. As such, the exponential terms in part (a) of

Theorem 3 compensate for this estimation.

5. Numerical results

In this section, we present simulation and real-data evidence that supports the effectiveness of

the newly proposed NP-EO algorithms. In each simulation setting, all trained algorithms are

evaluated on a large test set to the approximate the (population-level) type I and type II errors.

This procedure is repeated 1,000 times and thus 1,000 copies of (approximate) type I and type

II errors can be acquired. Then, the NP violation rate is computed as the proportion of type I

error exceeding the target level defined in the NP constraint. Similarly, the EO violation rate

is computed as the proportion of type II error disparity exceeding the target level defined in

the EO constraint. Finally, recall that for NP-EOOP algorithm, we use δ, instead of δ/2, in

Algorithm (1).

5.1. Simulation
In all settings, for each y ∈ {0, 1} and s ∈ {a, b}, we generate ny,s training observations and

100ny,s test observations. We compare the NP-EOOP and NP-EOMP algorithms with three

existing algorithms, namely, the classical algorithm, NP umbrella algorithm, and NP umbrella

algorithm mixed with random guesses. Here, the classical algorithm (e.g., logistic regression,

support vector machines) is the base algorithm without any adjustment for either the NP or EO

constraint. The NP umbrella algorithm adjusts base algorithms for the NP constraint and it is

described in Section A.1.

The NP umbrella algorithm mixed with random guesses, inspired by Hardt et al. (2016),

works as follows. We start with an NP classifier, ϕ̂NP, trained by the NP umbrella algorithm.

Without loss of generality, we assume Ra
1(ϕ̂NP) > Rb

1(ϕ̂NP). A naive method to make the EO

constraint satisfied is to increase type II error for S = b by adding noise via a random guess

classifier ϕRG with IP(ϕRG = 1) = α. Then, for an observation in the testing sample with S = a,

we use ϕ̂NP only; for an observation with S = b, with probability p, ϕ̂NP is selected to classify

this observation, and with probability 1−p, ϕRG is used. Note that Rb
1(ϕRG) = 1−α. Then, for
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Table 1. Averages of type I and II errors, along with violation rates of the NP

and EO constraints over 1,000 repetitions for Simulation 1. Standard error of the

means (×10−4) in parentheses

average of

type I errors

average of

type II errors

NP violation

rate

EO violation

rate

NP-EOOP .012(1.13) .480(12.75) 0(0) .046(66.28)

NP-EOMP .039(1.92) .387(14.74) .033(56.52) .029(53.09)

NP mixed with

random guess
.035(1.61) .657(23.25) .010(31.48) .037(59.72)

NP .039(1.97) .163(3.78) .047(66.96) 1(0)

classical .094(1.79) .096(1.35) 1(0) 1(0)

this mixed classifier ϕ̂mixed, R
a
1(ϕ̂mixed) = Ra

1(ϕ̂NP) and Rb
1(ϕ̂mixed) = pRb

1(ϕ̂NP)+ (1− p)(1−α).

As long as ϕ̂NP is more powerful than ϕRG on group a, i.e., Ra
1(ϕ̂NP) ≤ 1−α, ϕ̂mixed can achieve

equality of opportunity by choosing p properly.

In this simulation, we choose the probability p by 20-fold cross validation: we train an NP

classifier on 19 folds of the training data and compute the estimated Ra
1(ϕ̂NP) and Rb

1(ϕ̂NP) on

the left-out fold. Since Ra
1(ϕRG) and Rb

1(ϕRG) are explicit, we can directly estimate Ra
1(ϕ̂mixed),

Rb
1(ϕ̂mixed) and thus type II error disparity for every value of p and the option of adding random

guesses for either S = a or S = b. We traverse all the combinations of p = 0, 0.1, 0.2, 0.3, · · · , 0.9
and the options of adding random guesses to both S components. Next, for every combina-

tion, we calculate the estimated type II error disparity for every fold and thus can estimate the

estimated probability of type II error disparity exceeding ε. Finally, we select the the combi-

nation such that this estimated probability is smaller than or equal to γ. If there are multiple

such combinations, we select the one with the largest p. Then the resulting ϕ̂mixed satisfies

high-probability NP and EO constraints.

Simulation 1. Let Xy,s be multidimensional Gaussian distributed with mean µy,s and co-

variance matrix Σy,s for each y ∈ {0, 1} and s ∈ {a, b}. Here, µ0,a = (1, 2, 1)⊤, µ1,a = (0, 0, 0)⊤,

µ0,b = (0, 0, 2)⊤ and µ1,b = (1, 0,−1)⊤. Moreover

Σy,a =

 2 −1 0

−1 2 −1
0 −1 2

 and Σy,b =

1 0 0

0 2 0

0 0 1

 ,

for every y ∈ {0, 1}. Furthermore, n0,a = 800, n1,a = 400, n0,b = 1200 and n1,b = 1600. We set

α = 0.05, δ = 0.05, ε = 0.2 and γ = 0.05. The base algorithm used is logistic regression. The

numerical results associated with this simulation are reported in Table 1.

Simulation 2. Let Xy,s be uniformly distributed in a three dimensional ball By,s with radius

1 and centered at Oy,s, where O0,a = (0, 0, 0)⊤, O1,a = (1, 0,−1)⊤, O0,b = (1, 1, 1)⊤ and O1,b =

(−1, 1, 0)⊤. Furthermore, n0,a = 800, n1,a = 400, n0,b = 1200 and n1,b = 1600. We also set
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Table 2. Averages of type I and II errors, along with violation rates of NP and EO

constraints over 1,000 repetitions for Simulation 2. Standard error of the means

(×10−4) in parentheses

average of

type I errors

average of

type II errors

NP violation

rate

EO violation

rate

NP-EOOP .012(1.12) .478(12.67) 0(0) .053(70.88)

NP-EOMP .038(2.01) .346(14.11) .030(53.97) .070(80.72)

NP mixed with

random guess
.035(1.55) .588(21.11) .006(24.43) .009(29.88)

NP .034(2.45) .191(6.43) .029(53.09) 1(0)

classical .094(1.88) .094(1.39) 1(0) 1(0)

α = 0.05, δ = 0.05, ε = 0.2 and γ = 0.05. The base algorithm used is logistic regression. The

numerical results associated with this simulation are reported in Table 2.

In both simulations, the classical classifier admits the lowest type II error; the NP classifier

comes in the second place. This is not surprising as the NP paradigm controls the type I error

to a low level with high probability, thereby resulting in a higher type II error. The NP and EO

violation rates are both higher than the target levels for the classical classifier, whereas the NP

classifier fails to keep the EO violation rate under the target level. These two classifiers adopt

no design for EO adjustments; thus, it is expected that the EO requirement would fail.

The remaining three algorithms, NP-EOOP, NP-EOMP and NP mixed with random guesses,

are built to achieve the high-probability NP and EO constraints. All three algorithms produce

an overall type II error larger than that of the NP paradigm. This is the price paid for equality

in our classification algorithms. For reference, we remark that the “nearly trivial” NP-EO

classifier, a random guess that return 1 with probability 0.05 and 0 otherwise, has an overall

type II error as high as 0.95. Benchmarked against this result, the classifiers listed in both

Tables 1 and 2 have much smaller type II errors. Moreover, in terms of the overall type II error,

it is clear that NP-EOOP and NP-EOMP outperform NP mixed with random guesses, suggesting

the effectiveness of our proposed algorithms. Between the two proposed algorithms, NP-EOMP

yields larger average overall type I error and type I error violation rate, and smaller overall type

II error than NP-EOOP, which agrees with the argument in Section 4.2 that NP-EOMP uses

multiple pivots to select thresholds more effectively. In conclusion, the two simulation studies

illustrate that our proposed algorithms under the NP-EO paradigm are able to achieve the goals

of regulating equality of opportunities and controlling type I error while only paying a modest

price in terms of the less consequential type II error.

5.2. Real data analysis
In many countries, lenders’ discrimination against a certain social group other than creditwor-

thiness is either illegal or socially unacceptable. Most notably, the Equal Credit Opportunity

Act in the US explicitly makes it unlawful for any creditor to discriminate against any applicant

on the basis of race, color, sex, and other non-credit related social factors. Nevertheless, ample
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evidence shows that Hispanic and Black borrowers have less access to credits or pay a higher

price for mortgage loans in the US (Munnell et al., 1996; Charles et al., 2008; Hanson et al.,

2016; Bayer et al., 2018).

With the emergence of the FinTech market, statistical and machine learning techniques have

gained increasing popularity in lending decisions by both traditional financial institutions and

peer-to-peer lending and crowd-sourcing platforms. An important regulatory concern in this de-

velopment is whether algorithmic decision-making promotes or impedes impermissible discrim-

ination. Recently, Bartlett et al. (2022) show that algorithmic lending reduces rate disparities

between Latinx/African-American borrowers and other borrowers in consumer-lending markets

but cannot eliminate the bias. Fuster et al. (2022) find that, in the US mortgage market, Black

and Hispanic borrowers are disproportionately less likely to gain from the introduction of ma-

chine learning in lending decisions. Central in the welfare judgement of algorithmic lending is

the tradeoff between efficiency (controlling default risk) and equality (non-disparate treatment).

In the section, we illustrate how our proposed algorithms can help address this question with

an example of potential gender bias in credit card consumption in Taiwan.

We focus on this case for two reasons. First, gender discrimination is a significant phenomenon

in credit lending markets worldwide. Alesina et al. (2013) find that Italian women pay more

for overdraft facilities than men. Bellucci et al. (2010) and Andrés et al. (2021) show that

female entrepreneurs face tighter credit availability in Italy and Spain. Ongena and Popov

(2016) document a strong correlation between gender bias and credit access across developing

countries. Second, practically, the Taiwanese credit card dataset is simple, transparent, and has

clear labelling of payment status that enables an analysis of financial risk.

The dataset is from Yeh and Lien (2009), which has been widely used to evaluate various data

mining techniques. This dataset depicts the given credit, demographic features, and payment

history of 30,000 individuals during April 2005 to September 2005. Importantly, it includes

a binary status of the payment: either default, encoded by 0, or non-default, encoded by 1.

Among all 30,000 records, 6,636 of them are labelled as 0, i.e., default. In this dataset, a person

is default if they fail to repay the credit card in October 2005. The payment status defines

the type I/II errors in the classification problem, and the protected attribute is gender. In this

dataset, 11,888 people are labelled as male and 18,112 are labelled as female. Fitting such a

typical credit-lending problem into the NP-EO classification framework, banks primarily want to

control the risk of misclassifying someone who will default as non-default (type I error) although

they also want to minimize the chance of letting go non-defaulters (type II error). Furthermore,

by regulation or as a social norm, fairness requires banks not to discriminate against qualified

applicants on the basis of gender. Therefore, to obtain the dual goal of risk control and fairness,

our classification problem needs to satisfy the NP constraint and the EO constraint. We also

note that since we already illustrated in Section 5.1 that the NP classifier mixed with random

guesses performs worse than our proposed algorithms in all simulation settings, we do not include

this classifier in this real data section.

We use 1/3 of the data for training and the other 2/3 for test, with stratification in both
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Table 3. (Averages of type I and II errors, along with violation rates of NP

and EO constraints over 1,000 repetitions for credit card dataset. Standard

error of the means (×10−4) in parentheses

average of

type I errors

average of

type II errors

NP violation

rate

EO violation

rate

NP-EOOP .081(3.11) .720(6.65) .033(56.52) .034(57.34)

NP-EOMP .089(2.99) .701(6.23) .114(100.55) .054(71.51)

NP .088(3.02) .700(6.26) .111(99.39) .482(158.10)

classical .633(4.02) .059(1.31) 1(0) 0(0)

protected attribute and label. As an illustrative example, we set α = 0.1, δ = 0.1, ε = 0.05 and

γ = 0.1. The base algorithm used is random forest. The process is repeated 1000 times, and

the numerical results are presented in Table 3. Using the classical classifier, the high-probability

EO constraint is satisfied. Indeed, the EO violation rate in Table 3 is 0, indicating that the

random forest under the classic paradigm is “fair” and “equal” in terms of gender. This is not

entirely surprising given that gender bias in modern Taiwan is not a significant concern. The

problem with this classifier is that it produces a type I error of 0.633, which is prohibitively high

for nearly any financial institution. Benchmarked against the modest NP constraint (α = 0.1),

the violation rate is 1, imposing too much risk to the banks.

When the NP paradigm alone is employed, the EO violation rate surges to 0.482, demon-

strating a conflict between the banks’ private gain of improving risk control and the society’s

loss of achieving fairness. When the NP-EOOP and NP-EOMP algorithms are employed, both

the NP and EO constraints are satisfied with very small violation rates, and the classifiers si-

multaneously achieve the goals of risk control and fairness. The cost that the banks have to

bear is missing some potential business opportunities from non-defaulters, which is reflected in

the higher overall type II error committed by either NP-EO algorithm. Consistent with the

simulation results in Section 5.1, compared to NP-EOOP, NP-EOMP produces a smaller the

overall type II error while maintaining satisfactory (yet larger) violation rates.

6. Discussion

This paper is motivated by two practical needs in algorithmic design: a private user’s need to

internalize social consideration and a social planner’s need to facilitate private users’ compliance

with regulation. The challenge in fulfilling these needs stems from the conflict between the

private and social goals. Notably, the social planner’s promotion of fairness and equality may

constrain private users’ pursuit of profits and efficiency. In an ideal world without measurement

and sampling problems, such a private-public conflict can be best resolved by maximizing a social

welfare function with well-defined private and public components. Statistical tools hardly play

any role in this process. However, when knowledge about the social welfare function is partial,

measurement of each component in the objective is imperfect, and consequences of predictive

errors are uncertain, statistical innovation is called for to step into the endeavor of resolving the
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private-public conflict. Our work is a response to this challenge.

In a classification setting, we propose the NP-EO paradigm, in which we incorporate a

social consideration into a constrained optimization problem with the less-important private

goal (type II error) being the objective while the social goal (equal opportunity) and the more-

important private goal (type I error) as constraints. Algorithmic decisions with such restrictions

provide safeguards against deviations from the social goal and avoid significant damage to the

private goal, leaving the private-social conflict mostly absorbed by the less-consequential private

consideration. We believe that our approach can be applied to a wide range of settings beyond

the problem we are handling in this paper.

We do not claim that our proposed NP-EO paradigm is superior to other classification

paradigms. Rather, we are proposing an alternative framework to handle private-social con-

flicts in algorithmic design. Central in our analysis is a perspective of gaining security through

statistical control when multiple objectives have to be compromised. Key to our methodological

innovation is a principled way to redistribute specific errors so that the resulting classifiers have

high-probability statistical guarantees.

Possible future research direction include but not limited to: (i) extending the solutions to

multiple constraints with respects to the social norms, which can be multiple attributes such

as race and gender or multiple levels such as race, (ii) working with parametric models, such

as the linear discriminant analysis (LDA) model, to derive model-specific NP-EO classifiers

that address small sample size problem and satisfy oracle type inequalities, (iii) replacing type I

error constraint by other efficiency constraints, and replacing the EO constraint by other fairness

criteria, and (iv) studying fairness under other asymmetric efficiency frameworks such as isotonic

subgroup selection in Müller et al. (2023).
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A. Preliminaries

A.1. NP umbrella algorithm
The NP umbrella algorithm developed in Tong et al. (2018) adapts all scoring-type classification

methods (e.g., logistic regression, random forest, neural nets) so that the resulting classifiers

have the type I error bounded from above by a user-specified level α with pre-specified high

probability 1 − δ. In this section, we provide a description of NP umbrella algorithm (without

the protected attributes) for readers’ convenience.

Decompose the observations S by S = S0 ∪ S1, where S0 is the set of all instances of class

0 and S1 is the set of instances of class 1. Assume that the observations in S0 and S1 are

independent. Split S0 randomly into two parts S0train and S0left-out. The sets S1 and S0train are

combined to train a scoring function T (e.g., sigmoid function in logistic regression). Apply T to

all instances of S0left-out = {X0
1 , · · · , X0

n} and denote {t1, · · · , tn} := {T (X0
1 ), · · · , T (X0

n)}. Then
we have

Theorem 4. Denote T = {t(1), t(2), · · · , t(n)} where t(1) ≤ t(2) ≤ · · · ≤ t(n). Then, for any

α ∈ (0, 1),

IP
(
IPS

(
T (X) > t(k) | Y = 0

)
> α

)
≤

n∑
j=k

(
n

j

)
αn−j(1− α)j ,

where the outer IP is taken with respect to the randomness of S.

Hence, the classifier ϕ(X) = 1I{T (X) > t(k∗)} is able to control the type I error under α with

probability at least 1− δ, where k∗ is the smallest integer among {1, 2, · · · , n} such that

n∑
j=k

(
n

j

)
αn−j(1− α)j ≤ δ .

The smallest k was chosen because we want to achieve type II error as small as possible.

A.2. Bernstein-von Mises Theorem
Let {Pθ, θ ∈ Θ} be a family of distributions where Θ is a measurable set. For every θ ∈ Θ, Pθ has

density function pθ with respect to a common measure µ. Moreover, a prior distribution whose

density π is defined on Θ. Furthermore, let X1, X2, · · · , Xn be i.i.d. random variables with

distribution Pθ0 for some θ0 ∈ Θ. Then, the posterior distribution Π(·|X1, · · · , Xn) is defined as

follows. By any measurable set B ⊂ Θ,

Π(B|X1, · · · , Xn) =

∫
B Πn

j=1pθ(Xj)π(θ)dθ∫
ΘΠn

j=1pθ(Xj)π(θ)dθ
.

Next, define θ̂n = θ̂n(X1, X2, . . . , Xn) be the maximum likelihood estimator of θ0, i.e.,

θ̂n = argmaxθ∈ΘΠ
n
j=1pθ(Xj)

Then, the famous Bernstein-von Mises theorem links the Bayesian and frequenists’ points of

view. Many versions of conditions for Bernstein-von Mises can be found in literature. We will

adopt the version in Ghosh and Ramamoorthi (2011).
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(a) {x : pθ(x) > 0} is the same for all θ ∈ Θ.

(b) L(θ, x) = log pθ(x) is thrice differentiable with respect to θ in (θ0−a, θ0+a) for some small

a. Denote L′(θ), L′′(θ) and L′′′(θ) to be the first, second and third derivative, respectively.

Then, assume Eθ0L
′(θ0), Eθ0L

′′(θ0) to be finite and

sup
θ∈(θ0−a,θ0+a)

∣∣L′′′(θ)
∣∣ < M(x) ,

and Eθ0M <∞, where Eθ0 is the expectation taken with respect to the measure Pθ0 .

(c)

Eθ0L
′(θ0) = ∂θEθ0L(θ0) = 0 and Eθ0L

′′(θ0) = −Eθ0

(
L′(θ0)

)2
< 0 .

(d) For any δ > 0, there exists an ε > 0 such that

Pθ0

(
sup

|θ−θ0|>δ

1

n
(Ln(θ)− Ln(θ0)) ≤ −ε

)
→ 1 ,

where Ln(θ) =
∑n

j=1 L(θ,Xj) for any θ.

(e) The prior π is continuous and positive at θ0.

Theorem 5. Under the aforementioned conditions,∥∥∥∥Π(·|X1, · · · , Xn)−N
(
θ̂n,

1

n
i−1(θ0)

)∥∥∥∥
TV

→ 0 ,

in probability. Here, i(θ) = Eθ0 (L
′(θ0))

2 is the Fisher information of θ and ∥ · ∥TV is the total

variation distance.

A.3. Generalized Neyman-Pearson Lemma
For the readers’ convenience, we reproduce the generalized Neyman-Pearson Lemma. This

version is Theorem 3.6.1 from the textbook “Testing Statistical Hypotheses” (3rd edition)

(Lehmann and Ramano, 2005).

Theorem 6. Let f1, · · · , fm+1 be real-valued functions defined on a Euclidean space X and

integrable µ, and support that for given constants c1, · · · , cm, there exsits a critical function ϕ

satisfying ∫
ϕfidµ = ci , i = 1, · · · ,m . (17)

Let C be the class of critical functions ϕ for which (17) holds.

(i) Among all members of C, there exists one that maximizes∫
ϕfm+1dµ .

(ii) A sufficient condition for a member of C to maximize∫
ϕfm+1dµ
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is the existence of constants k1, · · · , km such that

ϕ(x) = 1 when fm+1(x) >

m∑
i=1

kifi(x) , (18)

ϕ(x) = 0 when fm+1(x) <

m∑
i=1

kifi(x) . (19)

(20)

(iii) If a member of C satisfies (18) with k1, · · · , km ≥ 0, then it maximizes∫
ϕfm+1dµ

among all critical functions satisfying∫
ϕfidµ ≤ ci , i = 1, · · · ,m . (21)

(iv) The set M of points in m-dimensional space whose coordinates are(∫
ϕf1dµ, · · · ,

∫
ϕfmdµ

)
for some critical function ϕ is convex and closed. If (c1, · · · , cm) is an inner point of M ,

then there exists constants k1, · · · , km and a test ϕ satisfying (17) and (18), and a necessary

condition for a member of C to maximize∫
ϕfm+1dµ

is that (18) holds a.e. µ.

B. Proofs

B.1. Proof of Theorem 1

First, we state the mathematical foundation for the densities. Let µ = µd ×M be a measure

defined on IRd×{a, b}, where µd is Lebesgue measure on IRd andM is the counting measure on

{a, b}. Thus, the random variable (X,S) | {Y = 0} and (X,S) | {Y = 1} both have densities

with respect to µ; denote them by f1 and f0 respectively.

Consider the NP oracle (without ε-separation constraint). That is, a classifier that minimizes

R1 among all classifiers ϕ such that R0(ϕ) ≤ α. Assume for simplicity that there exists a constant

cα such that

IP

(
f1(X,S)

f0(X,S)
> cα | Y = 0

)
= α .

By the Neyman-Pearson lemma, the classifier

ϕ∗∗
α (X,S) = 1I

{
f1(X,S)

f0(X,S)
> cα

}
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=
∑
s=a,b

1I

{
f1,s(X)

f0,s(X)
> cα ·

IP(S = s|Y = 0)

IP(S = s|Y = 1)

}
· 1I{S = s} ,

is the NP oracle classifier. Note that

IP

(
f(X | S, Y = 1)IP(S | Y = 1)

f(X | S, Y = 0)IP(S | Y = 0)
> z | Y = 0

)
= IP

(
f(X | S, Y = 1)IP(S | Y = 1)

f(X | S, Y = 0)IP(S | Y = 0)
> z | Y = 0, S = a

)
pa|0

+ IP

(
f(X | S, Y = 1)IP(S |}Y = 1)

f(X | S, Y = 0)IP(S | Y = 0)
> z | Y = 0, S = b

)
pb|0

=
(
1− F0,a

(
zpa|0p

−1
a|1

))
pa|0 +

(
1− F0,b

(
zpb|0p

−1
b|1

))
pb|0 .

Note that limz→∞ F0,a(z) = 1 and F0,a(0) = 0 by assumption. Similarly, F0,b has the same

property. Then, since both F0,a and F0,b are continuous, there exists a cα > 0 such that the

above quantity equals α. Note that ϕ∗∗
α can be written in the following way.

ϕ∗∗
α (X,S) = 1I

{
f1,a(X)

f0,a(X)
> c∗∗a

}
1I{S = a}+ 1I

{
f1,b(X)

f0,b(X)
> c∗∗b

}
1I{S = b} , (22)

where c∗∗a = cαp0,ap
−1
1,a and c∗∗b = cαp0,bp

−1
1,b . Thus, ϕ

∗∗
α = ϕ#

c∗∗a ,c∗∗b
.

Now, there are two cases, L1

(
ϕ#
c∗∗a ,c∗∗b

)
≤ ε or L1

(
ϕ#
c∗∗a ,c∗∗b

)
> ε. For the first case, ϕ#

c∗∗a ,c∗∗b

minimizes R1 over {ϕ : R0(ϕ) ≤ α,L1(ϕ) ≤ ε} since it is the NP oracle classifier and thus

ϕ#
c∗∗a ,c∗∗b

= ϕ∗
α,ε.

For the second case, assume without loss of generality, Rb
1

(
ϕ#
c∗∗a ,c∗∗b

)
− Ra

1

(
ϕ#
c∗∗a ,c∗∗b

)
> ε.

Consider the following optimization problem. For any classifier,

maximize IP (ϕ(X,S) = 1 | Y = 1) =

∫
ϕf(x | S = s, Y = 1)IP(S = s | Y = 1)dµd , (23)

subject to R0(ϕ) =

∫
ϕf(x | S = s, Y = 0)IP(S = s | Y = 0)dµd = α (24)

Rb
1(ϕ)−Ra

1(ϕ) (25)

=

∫
ϕ (f1,a(x)1I{S = a} − f1,b(x)1I{S = b}) dµd = ε . (26)

Here, recall that µd is the Lebesgue measure on IRd. By the generalized Neyman-Pearson

lemma9, if there exist two non-negative numbers k1, k2 such that the classifier

ϕ′(X,S) = 1I
{
f1,S(X)pS|1 > k1f0,S(X)pS|0 + k2 (f1,a(X)1I{S = a} − f1,b(X)1I{S = b})

}
= 1I

{
f1,a(X)

f0,a(X)
>

k1pa|0

pa|1 − k2

}
1I{S = a}+ 1I

{
f1,b(X)

f0,b(X)
>

k1pb|0

pb|1 + k2

}
1I{S = b} ,

satisfies R0(ϕ
′) = α and Rb

1(ϕ)−Ra
1(ϕ) = ε, it maximizes IP (ϕ(X,S) = 1 | Y = 1), i.e., minimizes

R1(ϕ) over all ϕ such that R0(ϕ) ≤ α and Rb
1(ϕ)− Ra

1(ϕ) ≤ ε, and thus validates the assertion

9Theorem 3.6.1 in Lehmann and Ramano (2005). It is reproduced as Theorem 6 in the Appendix for

the readers’ convenience.
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in the theorem. Therefore, it suffices to show the existence of k1 and k2. In particular, k1 > 0

and k2 ∈ (0, pa|1). We claim that there exist two constants C > C ′ > 0 such that

R0

(
ϕ#

Cpa|0p
−1
a|1,C

′pb|0p
−1
b|1

)
= α , (27)

and

Rb
1

(
ϕ#

Cpa|0p
−1
a|1,C

′pb|0p
−1
b|1

)
−Ra

1

(
ϕ#

Cpa|0p
−1
a|1,C

′pb|0p
−1
b|1

)
= ε . (28)

In view of this, take

k1 =
CC ′

Cpb|1 + C ′pa|1
and k2 =

C − C ′

Cp−1
a|1 + C ′p−1

b|1
,

and ϕ′ satisfies the conditions of optimization problem (23). Moreover, one can see k1 > 0 and

k2 ∈ (0, pa|1) since C > C ′ > 0 and

k2 =
C − C ′

Cp−1
a|1 + C ′p−1

b|1
<

C

Cp−1
a|1

= pa|1 .

Then, generalized Neyman-Pearson lemma validates the assertion. The remaining proof relies

on the following two key functions For c ∈ [cα,∞),

f(c) = inf
{
z ≥ 0 :

(
1− F0,a(cpa|0p

−1
a|1)
)
pa|0 +

(
1− F0,b(zpb|0p

−1
b|1)
)
pb|0 ≤ α

}
.

Conceptually, for a classifier whose S = a section threshold is cpa|0p
−1
a|1 and overall type I error

is equal to or less than α, f(c) describes its smallest possible S = b section threshold. Moreover,

define

g(c) = sup
{
z ≥ 0 : F1,b

(
zpb|0p

−1
b|1

)
− F1,a

(
cpa|0p

−1
a|0

)
= ε
}

.

on [cα, V ) where V = sup{z : F1,a

(
zpb|0p

−1
b|1

)
≤ 1 − ε}. If a classifier whose S = a section

threshold is c satisfies the ε-separation, g(c) describes the largest possible S = b section threshold.

To check the domain of g is indeed well defined, i.e., cα < V , note that by our assumption that

F1,b

(
cαpb|0p

−1
b|1

)
−F1,a

(
cαpa|0p

−1
a|0

)
> ε, one can conclude that F1,a

(
cαpb|0p

−1
b|1

)
< 1−ε and thus

cα < V by continuity of F1,a. Here, we make several remarks that are useful in the following

proofs

• f is non-increasing whereas g is positive and non-decreasing;

• By the definition of cα, 0 < g(cα) < cα and f(cα) ≤ cα;

• By continuity of Fy,s for every y and s, if f(c) > 0,(
1− F0,a(cpa|0p

−1
a|1)
)
pa|0 +

(
1− F0,b(f(c)pb|0p

−1
b|1)
)
pb|0 = α ,

and

F1,b

(
g(c)pb|0p

−1
b|1

)
− F1,a

(
cpa|0p

−1
a|0

)
= ε .
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Then, it remains to discuss several scenarios. If f(cα) ≤ g(cα), then the existence of C > C ′ > 0

is given by Lemma 1. The scenario where f(cα) > g(cα) is more involved. Let A− = {c ∈
[cα, V ) : g(c) < f(c)} and A+ = {c ∈ [cα, V ) : g(c) ≥ f(c)}. Furthermore, denote A = supA−.

Depending on if A < V or A = V , this scenario is further divided into two cases. For A < V ,

the proof is finished by Lemma 2. Otherwise, the proof is done by Lemma 3.

B.2. Proof of Proposition 1
Let p1, p2 ∈ (0, 1) be two distinct numbers. Moreover, define (Xp1

, Sp1
, Yp1

) and (Xp2
, Sp2

, Yp2
)

be random triplets with the same distributions except IP(Yp1
= 0) = p1 and IP(Yp2

= 0) = p2,

respectively. For any p ∈ {p1, p2} and arbitrary classifier ϕ, we denote Rs
q(ϕ | p) to be the Rs

q

of ϕ based on the random variable (Xp, Sp, Yp) for any s ∈ {a, b} and q ∈ {0, 1}. Similarly,

R0(ϕ | p) and R1(ϕ | p) are the type I error and type II errors of ϕ based on (Xp, Sp, Yp).

Note that by assumption, Xp1
| (Sp1

= s, Yp1
= s) actually has the same distribution as

Xp2
| (Sp2

= s, Yp2
= s) for each s ∈ {a, b}, q ∈ {0, 1}. Then, for every z ∈ [0,∞),

IP

(
f1,s(Xp1

)

f0,s(Xp1
)
≤ z | Yp1

= q, Sp1
= s

)
= IP

(
f1,s(Xp2

)

f0,s(Xp2
)
≤ z | Yp2

= q, Sp2
= s

)
,

for each s ∈ {a, b}, q ∈ {0, 1}. This further implies that, given a classifier ϕ#
ca,cb of the form in

equation (5) for arbitrary constants ca and cb, R
s
q(ϕ

#
ca,cb | p1) = Rs

q(ϕ
#
ca,cb | p2). Thus,

R0(ϕ
#
ca,cb | p1) = Ra

0(ϕ
#
ca,cb | p1)pa|0 +Rb

0(ϕ
#
ca,cb | p1)pb|0

= Ra
0(ϕ

#
ca,cb | p2)pa|0 +Rb

0(ϕ
#
ca,cb | p2)pb|0

= R0(ϕ
#
ca,cb | p2) .

Moreover,

Ra
1(ϕ

#
ca,cb | p1)−Rb

1(ϕ
#
ca,cb | p1) = Ra

1(ϕ
#
ca,cb | p2)−Rb

1(ϕ
#
ca,cb | p2) .

Denote ϕ#
p1 and ϕ#

p2 to be NP-EO oracle classifiers for (Xp1
, Sp1

, Yp1
) and (Xp2

, Sp2
, Yp2

), respec-

tively. Since ϕ#
p1 is an NP-EO oracle classifier for (Xp1

, Sp1
, Yp1

), it is also an NP-EO classifier

for (Xp2
, Sp2

, Yp2
). Similarly, ϕ#

p2 is also an NP-EO classifier for (Xp1
, Sp1

, Yp1
).

To this end, it suffices to verify the ϕ#
p1 achieves the minimum R1 for (Xp2

, Sp2
, Yp2

) among

all NP-EO classifier. Indeed, since ϕ#
p1 is also of the form in equation (5),

R1(ϕ
#
p1
| p1) = Ra

1(ϕ
#
p1
| p1)pa|1 +Rb

1(ϕ
#
p1
| p1)pb|1

= Ra
0(ϕ

#
p1
| p2)pa|1 +Rb

0(ϕ
#
p1
| p2)pb|1

= R1(ϕ
#
p1
| p2) .

Similarly, R1(ϕ
#
p2 | p1) = R1(ϕ

#
p2 | p2). If R1(ϕ

#
p2 | p2) < R1(ϕ

#
p1 | p2), one can conclude that

R1(ϕ
#
p2 | p1) < R1(ϕ

#
p1 | p1), violating the fact that ϕ#

p1 is an NP-EO oracle classifier. Therefore,

one can conclude R1(ϕ
#
p2 | p2) ≥ R1(ϕ

#
p1 | p2), and since ϕ#

p2 is also an NP-EO oracle classifier,

R1(ϕ
#
p2 | p2) = R1(ϕ

#
p1 | p2). Therefore, ϕ#

p1 achieves the minimum R1 for (Xp2
, Sp2

, Yp2
) among

all NP-EO classifiers.
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B.3. Proof of Theorem 2
The first assertion in this theorem is simple. By Theorem 4,

IP
(
IPX0,a

(
T a(X0,a) > t0,a

k0,a
∗

)
> α

)
≤ δ/2 ,

and

IP
(
IPX0,b

(
T b(X0,b) > t0,b

k0,b
∗

)
> α

)
≤ δ/2 .

Given R0(ϕ̂
∗) can be written as

IPX0,a

(
T a(X0,a) > t1,ak∗

a

)
IP(S = a | Y = 0) + IPX0,b

(
T b(X0,b) > t1,bk∗

b

)
IP(S = b | Y = 0) ,

along with the fact that t1,ak∗
a
≥ t0,a

k0,a
∗

and t1,bk∗
b
≥ t0,b

k0,b
∗
, one can conclude that

IP
(
R0(ϕ̂

∗) > α
)
≤ IP

(
IPX0,a

(
T a(X0,a) > t0,a

k0,a
∗

)
IP(S = a | Y = 0) > αIP(S = a | Y = 0)

)
+ IP

(
IPX0,b

(
T a(X0,b) > t0,b

k0,b
∗

)
IP(S = b | Y = 0) > αIP(S = b | Y = 0)

)
≤ δ .

Next, we proceed to the second assertion. Before presenting the proof, we remark that as

long as la, lb, na and nb are fixed, Algorithm 3 is a deterministic procedure. That is, k∗a =

k∗a(la, lb, na, nb) is a non-random quantity and neither is k∗b .

Now, let us focus on the proof. We denote the classifier given by Algorithm 1 is

ϕ̂∗(X,S) = 1I{T a(X) > t1,ak∗
a
}1I{S = a}+ 1I{T b(X) > t1,bk∗

b
}1I{S = b} .

Let ξaj = 1I{t1,aj ≤ t0,a
(k0,a

∗ )
} for every t1,aj ∈ T 1,a and ξbi = 1I{t1,bi ≤ t0,b

(k0,b
∗ )
} for every t1,bi ∈ T 1,b.

Note that

IP
(∣∣∣Ra

1 −Rb
1

∣∣∣ > ε
)
= IEStrain

[
IPleft-out

(∣∣∣Ra
1 −Rb

1

∣∣∣ > ε
)]

.

The probability IPleft-out is taken with respect to the randomness of all Sy,sleft-out. If this quantity

can be shown to be at most γ, then IP
(∣∣Ra

1 −Rb
1

∣∣ > ε
)
≤ γ. Thus, till the end of the proof, we

will only consider the randomness in IPleft-out and take T a and T b to be fixed. Next, note that

IPleft-out

(∣∣∣Ra
1 −Rb

1

∣∣∣ > ε
)
= IEξIPleft-out

(∣∣∣Ra
1 −Rb

1

∣∣∣ > ε | ξa1 , · · · , ξana
, ξb1, . . . , ξ

b
nb

)
where IEξ is the expectation taken with respect to ξa1 , · · · , ξana

, ξb1, . . . , ξ
b
nb
. Moreover, denote ξa =(

ξa1 , ξ
a
2 , · · · , ξan1

a

)
and ξb =

(
ξb1, ξ

b
2, · · · , ξbn1

b

)
. To this end, we will show IPleft-out

(∣∣Ra
1 −Rb

1

∣∣ > ε | ξa, ξb
)

is bounded by approximately γ with high probability. Consider the quantity

Ra
1 = Ra

1(ϕ̂
∗) = IPleft-out

(
T a(X1,a) ≤ t1,a(k∗

a)

)
.

We remark that conditional on Strain, Ra
1 is solely determined by S0,aleft-out and S

1,a
left-out. Thus, R

a
1

is independent of ξb. Furthermore, conditional on ξa, k∗a is fixed. Thus, denote k∗a = ka, for any

s ∈ IR the conditional distribution function of Ra
1 can be written as

IPleft-out

[
Ra

1 ≤ s | ξa, ξb
]
= IPleft-out [R

a
1 ≤ s | ξa] = IEt0,a

k
0,a
∗

[
IPleft-out

(
Ra

1 ≤ s | ξa, t0,a
k0,a
∗

)
| ξa
]
.
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Define Ga = IPleft-out

(
t1,a ≤ t0,a

(k0,a
∗ )
| t0,a

(k0,a
∗ )

)
where t1,a is another iid copy of t1,a1 , · · · , t1,an1

a
, then

conditional on ξa and t0,a
k0,a
∗
, Ra

1 is equal to distribution to Ga + (1−Ga)Ba where Ba is beta

distributed with parameters ka − la and n1
a − ka + 1 by Lemma 4. Here, la =

∑na

j=1 ξ
a
j . Then,

since

IPleft-out [R
a
1 ≤ s | ξa] = IEt0,a

k
0,a
∗

[
IPleft-out

(
Ra

1 ≤ s | ξa, t0,a
k0,a
∗

)
| ξa
]

= IEt0,a
k
0,a
∗

[IPBa
(Ga + (1−Ga)Ba ≤ s) | ξa]

= IEBa
IPt0,a

k
0,a
∗

(Ga + (1−Ga)Ba ≤ s | ξa)

= IEBa
IPFa

(Fa + (1− Fa)Ba ≤ s) ,

where Fa is a random variable such that IPFa
(Fa ≤ t) = IPt0,a

k
0,a
∗

(Ga ≤ t | ξa) for any constant

t. Here, we use the fact Ga is constant conditional on t0,a
k0,a
∗

for the second equality and Ba is

independent of t0,a
k0,a
∗

and ξa for the third equality. Therefore, the distribution of Ra
1 | ξa is equal

to Fa + (1 − Fa)Ba. Similarly, Rb
1 | ξb has the same distribution as Fb + (1 − Fb)Bb where Fb

and Bb are defined analogously.

Let Va = Fa+(1−Wa)Ba and Vb = Fb+(1−Wb)Bb. Given that Ra
1 and Rb

1 are independent,

IPleft-out

(∣∣∣Ra
1 −Rb

1

∣∣∣ > ε | ξa, ξb
)
= IPleft-out

(
|Va − Vb| > ε | ξa, ξb

)
.

It remains to show that the distributions of Fa and Fb are close to Gaussian distributions

described in Algorithm 3. This is true by Bernstein-von Mises theorem. In detail, it is not hard

to realize that IPFa
(Fa ≤ t) = IPt0,a

k
0,a
∗

(Ga ≤ t | ξa) is exactly the posterior distribution of Ga

given ξa. One can show that ξa is exactly the vector of independent Bernoulli random variables

with success rate Ga. Moreover, for fixed t0,a
k0,a
∗
, la/n

1
a is the maximum likelihood estimator of Ga

by the definition of la in display (10). Then, Bernstein-von Mises theorem states that∥∥∥∥IPFa

(
Fa ∈ · | ξa, ξb

)
−N

(
la
n1
a

,
G∗

a(1−G∗
a)

n1
a

)∥∥∥∥
TV

→ 0 ,

in probability, where G∗
a is true success probability of the Bernoulli distribution from which the

Bernoulli trials ξa are generated from. Furthermore,∥∥∥∥N ( la
n1
a

,
G∗

a(1−G∗
a)

n1
a

)
−N

(
la
n1
a

,
(la/n

1
a)(1− la/n

1
a)

n1
a

)∥∥∥∥
TV

→ 0 ,

in probability as la/n
1
a converges to G∗

a in probability. Therefore,∥∥∥∥IPFa

(
Fa ∈ · | ξa, ξb

)
−N

(
la
na

,
(la/n

1
a)(1− la/n

1
a)

n1
a

)∥∥∥∥
TV

→ 0 ,

in probability. That is, for any ε′, γ′ and sufficiently large na,

sup
B

∣∣∣IPFa

(
Fa ∈ B | ξa, ξb

)
− IPZa

(Za ∈ B)
∣∣∣ ≤ ε′ ,

with probability at least 1 − γ′/2 where Za ∼ N (la/na,
(la/na)(1−la/na)

na
). Here the supremum is

taken with respect to all measurable sets. Similarly, for sufficiently large nb

sup
B

∣∣∣IPFb

(
Fb ∈ B | ξa, ξb

)
− IPZb

(Zb ∈ B)
∣∣∣ ≤ ε′ ,
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with probability at least 1 − γ′/2. Therefore, denoting V ′
a = Za + (1 − Za)Ba and V ′

b = Zb +

(1− Zb)Bb, with probability at least 1− γ′,

IPleft-out

(∣∣∣Ra
1 −Rb

1

∣∣∣ > ε | ξa, ξb
)
= IEWa

IEWb
IEBa

IEBb
1I{|Va − Vb| > ε}

≤ IEZa
IEZb

IEBa
IEBb

1I{|V ′
a − V ′

b | > ε}+ ε′ + (ε′)2 .

The expectation term on the right hand side of the inequality is γ by design of Algorithm 1.

Therefore,

IEξIPleft-out

(∣∣∣Ra
1 −Rb

1

∣∣∣ > ε | ξa, ξb
)
≤ γ + ε′ + (ε′)2 + γ′ .

Let ξ(n1
a, n

1
b) = ε′ + (ε′)2 + γ′. Then, ξ(n1

a, n
1
b) is a function of n1

a and n1
b that converges to 0 as

n1
a and n1

b go to infinity and the proof is finished.

B.4. Proof of Theorem 3
We start with the proof of the NP part. By NP umbrella algorithm (4), with probability at least

1− δ, R0(ϕ̂∗) ≤ α, where ϕ̂∗ is defined in (13). Next, let R̂0(ϕ) be the empirical type I error of

a classifier ϕ. It is not hard to see that

R̂0(ϕ̂∗) =
1

n0
a + n0

b

 n0
a∑

i=1

1I{t0,ai > t0(k∗)
}+

n0
b∑

j=1

1I{t0,bj > t0(k∗)
}

 .

Next, for any ca, cb ∈ IR, define

ϕ̂ca,cb(X,S) = 1I{T a(X) > ca}1I{S = a}+ 1I{T b(X) > cb}1I{S = b} .

By the definition of k0a and k0b in (14), if t0,a(k0
a)

and t0,b(k0
b)

are chosen as the thresholds,

R̂0

(
ϕ̂t0,a

(k0
a)

,t0,b
(k0

b)

)
=

1

n0
a + n0

b

 n0
a∑

i=1

1I{t0,ai > t0,a(k0
a)
}+

n0
b∑

j=1

1I{t0,bj > t0,b(k0
b)
}


=

1

n0
a + n0

b

 n0
a∑

i=1

1I{t0,ai > t0(k∗)
}+

n0
b∑

j=1

1I{t0,bj > t0(k∗)
}

 = R̂0(ϕ̂∗) .

Then, for any ka, kb such that ka + kb = k0a + k0b , R̂0

(
ϕ̂t0,a

(k0
a)

,t0,b
(k0

b)

)
= R̂0

(
ϕ̂t0,a(ka),t

0,b

(kb)

)
= R̂0(ϕ̂∗).

Then, for any c,∣∣∣∣R0

(
ϕ̂t0,a

(k0
a)

,t0,b
(k0

b)

)
−R0(ϕ̂∗)

∣∣∣∣
≤
∣∣∣∣R0

(
ϕ̂t0,a

(k0
a)

,t0,b
(k0

b)

)
− R̂0

(
ϕ̂t0,a

(k0
a)

,t0,b
(k0

b)

)∣∣∣∣+ ∣∣∣R0

(
ϕ̂∗

)
− R̂0

(
ϕ̂∗

)∣∣∣ .
Next, it suffices to bound the two quantities on the right hand side by η/2 respectively. Note

that∣∣∣R0

(
ϕ̂∗

)
− R̂0

(
ϕ̂∗

)∣∣∣
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≤

∣∣∣∣∣∣ 1n0

 n0
a∑

i=1

1I{t0,ai > t0(k∗)
}+

n0
b∑

j=1

1I{t0,bj > t0(k∗)
}

− IP
(
T (X,S) > t0(k∗)

| Y = 0
)∣∣∣∣∣∣ ≤ η/2 ,

with probability at least 1− 2 exp (−1
2n

0η2) by the Dvoretzky-Kiefer-Wolfowitz inequality. For

the concentration of R̂0

(
ϕ̂t0,a

(k0
a)

,t0,b
(k0

b)

)
, we first consider the concentration of n0

a and n0
b . Define

Aη =
{∣∣∣n0

a

n0 − pa|0

∣∣∣ ≤ η
8

}
. Hoeffding’s inequality implies IP(Ac

η) ≤ 2 exp(− 1
32n

0η2). On the event

Aη, note that

R0

(
ϕ̂t0,a

(k0
a)

,t0,b
(k0

b)

)
− R̂0

(
ϕ̂t0,a

(k0
a)

,t0,b
(k0

b)

)

≤

 1

n0
a

n0
a∑

i=1

1I{t0,ai > t0,a(k0
a)
}

( n0
a

n0
a + n0

b

)
−Ra

0

(
ϕ̂t0,a

(k0
a)

,t0,b
(k0

b)

)
pa|0

+

 1

n0
b

n0
b∑

i=1

1I{t0,bi > t0,a(k0
b)
}

( n0
b

n0
a + n0

b

)
−Rb

0

(
ϕ̂t0,a

(k0
a)

,t0,b
(k0

b)

)
pb|0 .

Since the {S = a} and {S = b} parts are symmetric, we will only focus on the {S = a} part.

Note that∣∣∣∣∣∣
 1

n0
a

n0
a∑

i=1

1I{t0,ai > t0,a(k0
a)
}

( n0
a

n0
a + n0

b

)
−Ra

0

(
ϕ̂t0,a

(k0
a)

,t0,b
(k0

b)

)
pa|0

∣∣∣∣∣∣
≤

∣∣∣∣∣∣ 1n0
a

n0
a∑

i=1

1I{t0,ai > t0,a(k0
a)
} −Ra

0

(
ϕ̂t0,a

(k0
a)

,t0,b
(k0

b)

)∣∣∣∣∣∣+
∣∣∣∣ n0

a

n0
a + n0

b

− pa|0

∣∣∣∣ .
On Aη, the second term on the right hand side of this inequality is at most η/8. It suffices to

bound the first term. Note that Aη is equivalent to n0(pa|0− η/8) ≤ n0
a ≤ n0(pa|0 + η/8). Thus,

on this event, the first term is bounded by η/8 with probability at least 1− 2 exp(− 1
32n

0(pa|0 −
η/8)η2) by Lemma 9. Apply the same procedure to {S = b} part, one can have similar results.

Therefore,

IP

 sup
t0,a
(k0

a)
,t0,b
(k0

b)

∣∣∣∣R0

(
ϕ̂t0,a

(k0
a)

,t0,b
(k0

b)

)
− R̂0

(
ϕ̂t0,a

(k0
a)

,t0,b
(k0

b)

)∣∣∣∣ > η

2


≤ 2e−

1

32
n0(pa|0−η/8)η2

+ 2e−
1

32
n0(pb|0−η/8)η2

+ 2e−
1

32
n0η2

,

and thus

IP

 sup
t0,a
(k0

a)
,t0,b
(k0

b)
,t0(k∗)

∣∣∣∣R0

(
ϕ̂t0,a

(k0
a)

,t0,b
(k0

b)

)
−R0(ϕ̂∗)

∣∣∣∣ > η


≤ 2e−

1

32
n0(pa|0−η/8)η2

+ 2e−
1

32
n0(pb|0−η/8)η2

+ 2e−
1

32
n0η2

+ 2e−
1

2
n0η2

.

The proof of the second assertion is similar to the proof of Theorem 2. Let us set Ra
1 :=
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Ra
1(ϕ̂

∗∗) and recall that

la(i) =

n1
a∑

j=1

1I
{
t1,aj ≤ t0,a(i)

}
,

for i ∈ [n0
a]. One modification we need is to show

Ra
1 | {la(1), la(2), · · · , la(n0

a), t
0,a
(1), · · · , t

0,a
(n0

a)
} d
=

Bk,la(1)−k+1L
a
1, k ≤ la(1) ,

La
p +

(
La
p+1 − La

p

)
Bk−la(p),la(p+1)−k+1, la(p) < k ≤ la(p+ 1), p ∈ [n0

a − 1] ,

La
n0

a
+ (1− La

n0
a
)Bk−la(n0

a),n
1
a−k+1, k > la(n

0
a) ,

(29)

where La
j = IPleft-out

(
t1,a ≤ t0,a(j) | t

0,a
(j)

)
for j ∈ [n0

a] and t1,a is another iid copy of t1,a1 , · · · , t1,an1
a
.

However, this is true by Lemma 8. After this point is validated, one can mimic the proof of

Theorem 2 and invoke the Bernstein-von Mises theorem to the multinomial posterior distribution

of [
La
1, L

a
2 − La

1, L
a
3 − La

2, · · · , La
n0

a
− La

n0
a−1, n

1
a − La

n0
a

]⊤
given {la(1), la(2), · · · , la(n0

a)}.
Another modification is that we need to make sure n1

a and n1
b diverge if n1 goes to infinity.

However, since pa|1 and pb|1 are strictly positive,
∣∣n1

a/n
1 − pa|1

∣∣ converges to 0 in probability.

This implies n1
a diverges with probability converging to 1. Similarly, n1

b diverges with probability

converging to 1. Then the remainder of this proof follows the proof of Theorem 2.

B.5. Lemmas

Lemma 1. If f(cα) ≤ g(cα), there exist C > C ′ > 0 that satisfy equations (27) and (28).

Proof. By the definition of cα,(
1− F0,a(cαpa|0p

−1
a|1)
)
pa|0 +

(
1− F0,b(cαpb|0p

−1
b|1)
)
pb|0 = α .

Moreover, (
1− F0,a(cαpa|0p

−1
a|1)
)
pa|0 +

(
1− F0,b(f(cα)pb|0p

−1
b|1)
)
pb|0 = α ,

Since f(cα) ≤ g(cα) < cα, we have(
1− F0,a(cαpa|0p

−1
a|1)
)
pa|0 +

(
1− F0,b(g(cα)pb|0p

−1
b|1)
)
pb|0 = α ,

by monotonicity of F0,a. Thus letting C = cα and C ′ = g(cα) yields the desired result.

Lemma 2. If f(cα) > g(cα) and A < V , there exist C > C ′ > 0 that satisfy equation 27 and

28.
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Proof. By monotonicity of f and g, for any c ∈ [cα, V ), one can conclude c ∈ A+ if

c ∈ (A, V ) and c ∈ A− if c ∈ [cα, A). Then, we claim that A ∈ A+ since if A ∈ A−, there exists

an a ∈ (g(A), f(A)), and, for a sufficiently small positive number δ, by continuity of F0,a and

F1,a, we have (
1− F0,a((A+ δ)pa|0p

−1
a|1)
)
pa|0 +

(
1− F0,b(apb|0p

−1
b|1)
)
pb|0 > α ,

and

F1,b

(
apb|0p

−1
b|1

)
− F1,a

(
(A+ δ)pa|0p

−1
a|0

)
< ε .

Thus, f(A + δ) > a > g(A + δ) and A + δ ∈ A−, contradicting the fact that A + δ ∈ A+.

Furthermore, since f(cα) > g(cα), replacing A with cα in all previous argument yields the

conclusion that A > cα.

Now denote F = limc→A− f(c) and G = limc→A− g(c), whose existence is guaranteed by f

and g being monotone and bounded by f(c) > 0 and g(c) < f(c) ≤ f(cα) ≤ cα. Furthermore,

we have G ≥ g(cα) > 0 by monotonicity of g and F ≥ G as f > g on A−. Then, by continuity

of F0,a and F0,b,(
1− F0,a(Apa|0p

−1
a|1)
)
pa|0 +

(
1− F0,b(Fpb|0p

−1
b|1)
)
pb|0

=
(
1− F0,a(Apa|0p

−1
a|1)
)
pa|0 + lim

c→A−

(
1− F0,b(f(c)pb|0p

−1
b|1)
)
pb|0

=
(
1− F0,a(Apa|0p

−1
a|1)
)
pa|0 + lim

c→A−

[
α−

(
1− F0,a(cpa|0p

−1
a|1)
)
pa|0

]
= α . (30)

Similarly, we have

F1,b

(
Gpb|0p

−1
b|1

)
− F1,a

(
Apa|0p

−1
a|0

)
= lim

c→A−
F1,b

(
g(c)pb|0p

−1
b|1

)
− F1,a

(
Apa|0p

−1
a|0

)
= ε+ lim

c→A−
F1,a

(
cpa|0p

−1
a|0

)
− F1,a

(
Apa|0p

−1
a|0

)
= ε . (31)

Therefore, by monotonicity, F1,b

(
zpb|0p

−1
b|1

)
− F1,a

(
Apa|0p

−1
a|0

)
= ε for any z ∈ [G, g(A)] and(

1− F0,a(Apa|0p
−1
a|1)
)
pa|0 +

(
1− F0,b(zpb|0p

−1
b|1)
)
pb|0 = α for any z ∈ [f(A), F ]. Since A ∈ A+,

g(A) ≥ f(A). Additionally, F ≥ G. Then, [G, g(A)] ∩ [f(A), F ] ̸= ∅. Let A′ be an element in

this intersection. One can show A′ ≤ F ≤ f(cα) ≤ cα < A and A′ ≥ G ≥ g(cα) > 0. Taking

C = A and C ′ = A′, we have C > C ′ > 0 and constraints (27) and (28) are satisfied.

Lemma 3. If f(cα) > g(cα) and A = V , there exist C > C ′ > 0 that satisfy equation 27 and

28.

Proof. Let G and F be defined as in the proof of Lemma 2. Then, similar to equation (31),

we have F1,b

(
Gpb|0p

−1
b|1

)
− F1,a

(
V pa|0p

−1
a|0

)
= ε. Then, for every z ∈ [G,∞),

F1,b

(
zpb|0p

−1
b|1

)
− F1,a

(
V pa|0p

−1
a|0

)
= ε ,

as F1,a

(
V pa|0p

−1
a|0

)
= 1− ε. Furthermore, similar to equation (30)(
1− F0,a(V pa|0p

−1
a|1)
)
pa|0 +

(
1− F0,b(Fpb|0p

−1
b|1)
)
pb|0 = α ,
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and 0 < G ≤ F . Then, taking C = V and C ′ = F suffices as C = V > cα ≥ f(cα) ≥ F = C ′ ≥
G > 0.

Lemma 4. Conditional on ξa, t0,a
(k0,a

∗ )
and T , Ra

1 is equal in distribution to Ga + (1−Ga)Ba.

Furthermore, Ba is independent of ξa, t0,a
(k0,a

∗ )
and Ga.

Proof. For all T 1,a = {t1,a1 , t1,a2 , · · · , t1,an1
a
} and j = 1, 2, · · · , n1

a, let Uj = IPleft-out

(
T a(X1,a) ≤ t1,aj

)
.

Then, Uj ’s are independent random variables uniformly distributed on (0, 1). To see this, denote

F 1,a(z) = IPleft-out

(
T a(X1,a) ≤ z

)
, then, for any z ∈ (0, 1),

IPleft-out (Uj ≤ z) = IPleft-out

(
F 1,a(t1,aj ) ≤ z

)
= IPleft-out

(
t1,aj ≤ (F 1,a)−1(z)

)
= F 1,a((F 1,a)−1(z)) = z ,

and the independence is guaranteed by the independence of t1,aj ’s. Moreover, for fixed t0,a
k0,a
∗
,

ξaj = 1I{t1,aj ≤ t0,a
(k0,a

∗ )
} = 1I{Uj ≤ F 1,a(t0,a

(k0,a
∗ )

)}. Then, conditional on t0,a
(k0,a

∗ )
, F 1,a and ξa, the

assertion is given by Lemma 5.

Lemma 5. Let U1, U2, · · · , Un be n independent random variables that are uniformly dis-

tributed over [0, 1] and ξj = 1I{Uj ≤ c} for every j = 1, 2, · · · , n an arbitrary deterministic

constant c ∈ [0, 1]. Then, for any 1 ≤ p < q ≤ n and 0 ≤ c ≤ s ≤ 1,

IP

U(q) ≤ s |
n∑

j=1

ξj = p

 =

n−p∑
k=q−p

(
n− p

k

)
(s− c)k(1− s)n−p−k

(1− c)n−p
.

That is, U(j) |
{∑n

j=1 ξj = q
}
is equal in distribution to c+(1− c)B where B is Beta distributed

with parameters q − p and n− q + 1. Furthermore

Proof. Note that

IP

U(q) ≤ s |
n∑

j=1

ξj = p

 =
IP
(
U(p) ≤ c < U(p+1) ≤ U(q) ≤ s

)
IP
(∑n

j=1 ξj = p
) .

The probability on the numerator equals(
n

p

)
cp

n−p∑
k=q−p

(
n− p

k

)
(s− c)k(1− s)n−p−k ,

whereas the probability on the denominator is(
n

p

)
cp(1− c)n−p .

Then, elementary algebra finishes the proof.

Lemma 6. Let {µ}n≥1 be an arbitrary sequence of numbers. Furthermore, let {σn}n≥1 and

{ςn}n≥1 be two positive sequences such that |σn − ςn| → 0, then

∥N (µn, σ
2
n)−N (µn, ς

2
n)∥TV → 0 .
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Proof. By Pinsker’s inequality, it is sufficient to show the convergence of the Kulbeck-Leibler

divergence of the two distributions. However, the Kulbeck-Leibler divergence of the two normal

distributions DKL

(
N (µn, σ

2
n)||N (µn, ς

2
n)
)
in the assertiona equals 1

2

(
log(σ2

n/ς
2
n) + σn/ςn − 1

)
and converges to 0.

Lemma 7. Let P and Q be two probability measures defined on (Ω,F). Assume, for some ε

sup
B∈F
|P (B)−Q(B)| ≤ ε .

Then, for any non-negative measurable function f bounded by a constant c,

|IEP (f)− IEQ(f)| ≤ cε .

Proof. Let g be an arbitrary positive step function defined on Ω bounded by c, i.e.,

g(x) =

n∑
j=1

cj1I{x ∈ Aj} ,

where Aj ’s are disjoint sets in F , n is a constant and cj ≤ c for all 1 ≤ j ≤ n. Let Gp = {Aj :

P (Aj) ≥ Q(Aj)} and Gq = {Aj : P (Aj) < Q(Aj)}. Then,

|IEP (g)− IEQ(g)| ≤ max
G∈{Gp,Gq}

∑
j∈G

cj (P (Aj)−Q(Aj))

≤ c max
G∈{Gp,Gq}

∑
j∈G

(P (Aj)−Q(Aj))

≤ cε ,

where the last inequality is given by the definition of total variation distance. Then, let {fm}m≥1

be a sequence of increasing step functions that converge to f pointwise as m → ∞. Then,

IEP fm → IEP f and IEQfm → IEQf . Thus,

|IEP (f)− IEQ(f)| ≤ |IEP (f)− IEP fm|+ |IEP (fm)− IEQ(fm)|+ |IEQ(f)− IEQfm|

≤ |IEP (f)− IEP fm|+ cε+ |IEQ(f)− IEQfm| .

Letting m go to infinity on both sides of the inequality yields the result.

Lemma 8. The equality in distribution in (29) holds. Furthermore, the Beta distribution

Bp,q is independent of the conditional distribution La
r in (29), regardless of their indices p, q and

r.

Proof. The first part of the proof follows the proof of Lemma 5 Then, let a U1, · · · , Un

be n independent uniform random variables and li =
∑n

j=1 1I{Uj ≤ ci}, i ∈ [m], where c1 ≤
c2 ≤ · · · ≤ cm is a sequence of increasing constants. Furthermore, set c0 = 0, cm+1 = 1, l0 = 0

and lm+1 = n. It suffices to show that U(q) | {l1, l2, · · · , lm} has a scaled and shifted Beta

distribution. That is, if li < q ≤ li+1 for any constant s,

IP
(
U(q) ≤ s | l1, l2, · · · , lm

)
=

li+1∑
j=q

(
li+1 − li
q − li

)(
s− ci

ci+1 − ci

)q−li (
1− s− ci

ci+1 − ci

)li+1−q

.
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Indeed, one can write

IP
(
U(q) ≤ s | l1, l2, · · · , lm

)
=

IP
(
U(q) ≤ s, U(l1) ≤ c1 < U(l1+1) ≤ · · ·U(lm−1) ≤ cm−1 < U(lm) ≤ cm

)
IP
(
U(l1) ≤ c1 < U(l1+1) ≤ · · ·U(lm−1) ≤ cm−1 < U(lm) ≤ cm

) .

The denominator is a multinomial probability, and thus equals(
m+ 1

l1, l2 − l1, l3 − l2, · · · , n− lm

)
cl11 (c2 − c1)

l2−l1 · · · (1− cm)n−lm .

The numerator equals

li+1∑
j=q

(
m+ 1

l1 − l0, l2 − l1, · · · , j − li, li+1 − j, · · · , lm+1 − lm

)
(s− ci)

j−li(ci+1 − s)li+1−j

×Πk∈[m+1],k ̸=i(ck+1 − ck)
lk+1−lk .

Then elementary algebra gives the desired result.

Lemma 9. Let {(Tj , Sj)}nj=1 be i.i.d. copies of the random couple (T, S) ∈ IR × {a, b} and

na =
∑n

j=1 1I{Sj = a}. Define A = {c1 ≤ na ≤ c2} for deterministic constants c1, c2. Then, for

any η

IP

({
sup
c∈IR

∣∣∣∣∣ 1na

∑
i:Si=a

1I{Ti > c} − IP(T > c | S = a)

∣∣∣∣∣ > η

}
∩ A

)
≤ 2e−

1

2
c1η2

.

Proof. Let Ijn = {I ⊂ [n] : |I| = j} be the collection of subsets of [n] that have cardinality

j. Note that A =
⋃⌊c2⌋

j=⌈c1⌉
⋃

I∈Ij
n
AI where AI = {Si = a,∀i ∈ I, and Si = b,∀i ∈ [n]\I}. Thus,

IP

({
sup
c∈IR

∣∣∣∣∣ 1na

∑
i:Si=a

1I{Ti > c} − IP(T > c | S = a)

∣∣∣∣∣ > η

}
∩ A

)

=

⌊c2⌋∑
j=⌈c1⌉

∑
I∈Ij

n

IP

({
sup
c∈IR

∣∣∣∣∣ 1na

∑
i:Si=a

1I{Ti > c} − IP(T > c | S = a)

∣∣∣∣∣ > η

}
∩ AI

)

=

⌊c2⌋∑
j=⌈c1⌉

∑
I∈Ij

n

IP

(
sup
c∈IR

∣∣∣∣∣1j ∑
i:Si=a

1I{Ti > c} − IP(T > c | S = a)

∣∣∣∣∣ > η | AI

)
IP(AI) .

It is easy to check that T1, . . . , Tn are independent conditional on S1, . . . , Sn. Therefore,

IP

(
sup
c∈IR

∣∣∣∣∣1j ∑
i:Si=a

1I{Ti > c} − IP(T > c | S = a)

∣∣∣∣∣ > η | AI

)
≤ 2e−

1

2
jη2

,

by Dvoretzky–Kiefer–Wolfowitz inequality. Then,

⌊c2⌋∑
j=⌈c1⌉

∑
I∈Ij

n

2e−
1

2
jη2

IP(AI) ≤ 2e−
1

2
c1η2

⌊c2⌋∑
j=⌈c1⌉

∑
I∈Ij

n

IP(AI) ≤ 2e−
1

2
c1η2

.

C. Algorithms

In this section, we present the supplementary algorithms in this work.
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Algorithm 3: EO violation algorithm

Input : la, lb, na, nb : constants such that la ≤ na and lb ≤ nb

ε: upper bound for the type II error disparity

γ: type II error disparity violation rate target

1 γ̂ ← 1

2 R̂1 ← 1

3 k∗a ← n1
a

4 k∗b ← n1
b

5 for i = la + 1, la + 2, · · · , n1
a do

6 for j = lb + 1, lb + 2, · · · , n1
b do

/* Estimating IP
(∣∣F 1,a(i)− F 1,b(j)

∣∣ > ε
)
in (11) by Monte-Carlo

simulation */

7 K ← 1000 ; // K is the number of copies of F 1,a(i) and F 1,b(j)

generated. It is set to 1000 in all numerical experiments in this

work.

8 for k = 1, 2, · · · ,K do

9 Ga
k ← N

(
la/n

1
a,

(la/n1
a)((1−la)/n1

a)
n1

a

)
10 Gb

k ← N
(
lb/n

1
b ,

(lb/n1
b)((1−lb)/n1

b)
n1

b

)
; // Wa,Wb are two normal random

variables

11 Ba
k ← Beta(i− la, na − i+ 1)

12 Bb
k ← Beta(j − lb, nb − j + 1) ; // Ba

k , B
b
k are two Beta distributed

random variables

13 F a
k ← Ga

k + (1−Ga
k)B

a
k

14 F b
k ← Gb

k + (1−Gb
k)G

b
k

15 end

16 γ̂ ← 1
K

∑K
k=1 1I{|F a

k − F b
k | > ε}

17 R̂new
1 ← (i−1)+(j−1)

na+nb

18 if γ̂ ≤ γ and R̂new
1 < R̂1 then

19 k∗a ← i

20 k∗b ← j

21 R̂1 ← R̂new
1

22 end

23 end

24 end

Output: (k∗a, k
∗
b )
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Algorithm 4: Adjusted EO violation algorithm

Input : k(a), k(b): orders of possible thresholds

n0
a, n

0
b , n

1
a, n

1
b : sample sizes

la(1), la(2), · · · , la(n0
a), lb(1), lb(2), · · · , lb(n0

b): integers such that

0 ≤ la(1) ≤ la(2) ≤ · · · ≤ la(n
0
a) ≤ n1

a and 0 ≤ lb(1) ≤ lb(2) ≤ · · · ≤ lb(n
0
b) ≤ n1

b

ε: upper bound for the type II error disparity

1 for s = a, b do

2 ls(0)← 0

3 ls(n
0
s + 1)← n1

s

/* Specifying parameters for the Gaussian distribution by Bernstein-von

Mises theorem */

4 ds(j)← ls(j)− ls(j − 1), j ∈ [n0
s + 1]

5 µs ←
(
ds(1)
n1

s
, ds(2)

n1
s
, · · · , ds(n0

s+1)
n1

s

)⊤
; // µs is the mean vector for multivariate

normal

6 Σs ←
(ds(1)/n1

s)(1−ds(1)/n1
s)

n1
s

− (ds(1)/n1
s)(ds(2)/n1

s)
n1

s
· · · − (ds(1)/n1

s)(ds(n0
s+1)/n1

s)
n1

s

− (ds(2)/n1
s)(ds(1)/n1

s)
n1

s

(ds(2)/n1
s)(1−ds(2)/n1

s)
n1

s
· · · − (ds(2)/n1

s)(ds(n0
s+1)/n1

s)
n1

s

...
...

. . .
...

− (ds(n1
s+1)/n1

s)(ds(1)/n1
s)

n1
s

− (ds(n1
s+1)/n1

s)(ds(2)/n1
s)

n1
s

· · · (ds(n0
s+1)/n1

s)(1−ds(n0
s+1)/n1

s)
n1

s

 ;

// Σa is the covariance matrix

/* Specifying parameters for Beta distribution */

7 ks ← max{j ∈ [n0
s + 1] : ls(j) < k(s)}

8 ksl ← ls(ks)

9 ksu ← ls(ks + 1)

10 K ← 1000

11 for h = 1, 2, · · · ,K do

12 W s
h ← N (µs,Σs) ; // W s

h is a (n0
s + 1)-dimensional Gaussian vector

13 Bs
h = Beta (k(s)− ksl , k

s
u − k(s) + 1)

14 if ks = 0 then

15 Zs
h = [W s

h ]1 ; // [W s
h ]j is the jth element of W s

h

16 V s
h = Zs

hB
s
h

17 else if ks = n0
s then

18 Zs
h =

∑n0
s

j=1[W
s
h ]j

19 V s
h = Zs

h + (1− Zs
h)B

s
h

20 else

21 Zs
h =

∑ks

j=1[W
s
h ]j

22 V s
h = Zs

h + [W s
h ]ks+1B

s
h

23 end

24 end

25 end

26 va = 1
K

∑K
h=1 1I{V a

h − V b
h > ε}

27 vb =
1
K

∑K
h=1 1I{V b

h − V a
h > ε} ; // va, vb are one-sided violation rate

Output: (va, vb)
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Algorithm 5: Order selection algorithm

Input : ka, kb: starting pivots

n0
a, n

0
b , n

1
a, n

1
b : sample sizes

la(1), la(2), · · · , la(n0
a), lb(1), lb(2), · · · , lb(n0

b): two increasing sequences

ε: upper bound for the type II error disparity

γ: type II error disparity violation rate target

1 ls(0)← 0 for s ∈ {a, b}
2 ls(n

0
s + 1)← n1

s for s ∈ {a, b}
3 k(s)← ls(ks) + 1 for k ∈ {a, b}
4 while TRUE do

5 (va, vb)← Adjusted EO violation algorithm(k(s), ny
s , ls(1), · · · , ls(n0

s), ε) for

s ∈ {a, b} and y ∈ {0, 1}
6 if va > γ and vb > γ then

7 ks ← ks + 1 for s ∈ {a, b}
8 k(s)← ls(ks) + 1 for k ∈ {a, b}
9 else if va > γ then

10 if ka = 0 or kb = n0
b then

11 k(b)← k(b) + 1

12 else

13 knewa ← knewa − 1

14 knewb ← knewb + 1

15 knew(s)← ls(ks) + 1 for k ∈ {a, b}
16 (vnewa , vnewb )←

Adjusted EO violation algorithm(knew(s), ny
s , ls(1), · · · , ls(n0

s), ε) for

s ∈ {a, b} and y ∈ {0, 1}
17 if vnewb ≤ γ then

18 ks = knews for s ∈ {a, b}
19 k(s)← knew(s) for s ∈ {a, b}
20 else

21 k(b)← k(b) + 1

22 end

23 end

24 else if vb > γ then

25 do Step 10 - 22 with a and b switched

26 else
Output: (ka, kb)

27 end

28 end
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